English

If Angle θ is Divided into Two Parts Such that the Tangents of One Part is λ Times the Tangent of Other, and ϕ is Their Difference, Then Show that Sin θ = λ + 1 λ − 1 Sin ϕ - Mathematics

Advertisements
Advertisements

Question

If angle \[\theta\]  is divided into two parts such that the tangents of one part is \[\lambda\] times the tangent of other, and \[\phi\] is their difference, then show that\[\sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]

 
Answer in Brief

Solution

Let \[\alpha\]  and \[\beta\] be the two parts of angle \[\theta\]. Then, \[\theta = \alpha + \beta\] and

\[\phi = \alpha + \beta\]               (Given)
Now,
\[\tan\alpha = \lambda \tan\beta \left( \text{ Given }\right)\]
\[ \Rightarrow \frac{\tan\alpha}{\tan\beta} = \frac{\lambda}{1}\]
Applying componendo and dividendo, we get

\[\frac{\tan\alpha + \tan\beta}{\tan\alpha - \tan\beta} = \frac{\lambda + 1}{\lambda - 1}\]

\[ \Rightarrow \frac{\frac{\sin\alpha}{\cos\alpha} + \frac{\sin\beta}{\cos\beta}}{\frac{\sin\alpha}{\cos\alpha} - \frac{\sin\beta}{\cos\beta}} = \frac{\lambda + 1}{\lambda - 1}\]

\[ \Rightarrow \frac{\frac{\sin\alpha \cos\beta + \cos\alpha \sin\beta}{\cos\alpha \cos\beta}}{\frac{\sin\alpha \cos\beta - \cos\alpha \sin\beta}{\cos\alpha \cos\beta}} = \frac{\lambda + 1}{\lambda - 1}\]

\[ \Rightarrow \frac{\sin\left( \alpha + \beta \right)}{\sin\left( \alpha - \beta \right)} = \frac{\lambda + 1}{\lambda - 1}\]

\[\Rightarrow \frac{\sin\theta}{\sin\phi} = \frac{\lambda + 1}{\lambda - 1} \left( \theta = \alpha + \beta\text{ and }\phi = \alpha - \beta \right)\]
\[ \Rightarrow \sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]
 
shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 32 | Page 21

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the value of: tan 15°


Prove that: `(cos x  + cos y)^2 + (sin x - sin y )^2 =  4 cos^2  (x + y)/2`


Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:

sin (A + B)

 


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)


If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)


Prove that

\[\frac{\cos 11^\circ + \sin 11^\circ}{\cos 11^\circ - \sin 11^\circ} = \tan 56^\circ\]

 If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].


Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]


Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]

 


Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1


If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).

 

If sin α + sin β = a and cos α + cos β = b, show that

\[\cos \left( \alpha + \beta \right) = \frac{b^2 - a^2}{b^2 + a^2}\]

Prove that:
\[\frac{1}{\sin \left( x - a \right) \sin \left( x - b \right)} = \frac{\cot \left( x - a \right) - \cot \left( x - b \right)}{\sin \left( a - b \right)}\]


Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 


If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ. 


If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.  


If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =


If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to

 

\[\frac{\cos 10^\circ + \sin 10^\circ}{\cos 10^\circ - \sin 10^\circ} =\]

 


If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then


If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to


Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x


If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.


Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.


If cotθ + tanθ = 2cosecθ, then find the general value of θ.


If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2

[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]


Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2

[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]


The value of sin(45° + θ) - cos(45° - θ) is ______.


If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.


If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.


The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.


State whether the statement is True or False? Also give justification.

If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.


In the following match each item given under the column C1 to its correct answer given under the column C2:

Column A Column B
(a) sin(x + y) sin(x – y) (i) cos2x – sin2y
(b) cos (x + y) cos (x – y) (ii) `(1 - tan theta)/(1 + tan theta)`
(c) `cot(pi/4 + theta)` (iii) `(1 + tan theta)/(1 - tan theta)`
(d) `tan(pi/4 + theta)` (iv) sin2x – sin2y

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×