Advertisements
Advertisements
Question
Find the value of: tan 15°
Solution
tan 15° = tan (45° – 30°)
`(tan45° - tan30°)/(1+ tan45°tan30°)` (tan (A-B) = `(tanA-tanB)/(1+tan AtanB)`
`(1 - 1/sqrt(3))/(1 + 1 xx 1/sqrt(3))` .....`(tan pi = 1, tan 30 = 1/sqrt(3))`
= `((sqrt(3) - 1)/sqrt(3))/((sqrt(3) + 1)/sqrt(3))`
= `(sqrt(3) - 1)/(sqrt(3) + 1) xx (sqrt(3) - 1)/(sqrt(3) - 1)`
= `(sqrt(3) - 1)^2/(3 - 1)`
= `(3 + 1 - 2sqrt(3))/2`
= `(4 - 2sqrt(3))/2`
= `2 - sqrt(3)`.
APPEARS IN
RELATED QUESTIONS
Prove that: `sin^2 pi/6 + cos^2 pi/3 - tan^2 pi/4 = -1/2`
Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
Prove the following:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x
Prove that: `(cos x + cos y)^2 + (sin x - sin y )^2 = 4 cos^2 (x + y)/2`
Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]
Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]
Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x
Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]
If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.
If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].
If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].
Prove that:
Reduce each of the following expressions to the sine and cosine of a single expression:
24 cos x + 7 sin x
Show that sin 100° − sin 10° is positive.
If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ.
If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\]
If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =
If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is
If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]
The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is
If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =
If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =
Express the following as the sum or difference of sines and cosines:
2 cos 7x cos 3x
If sinθ + cosθ = 1, then find the general value of θ.
Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.
If cotθ + tanθ = 2cosecθ, then find the general value of θ.
Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2
[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]
The value of tan3A - tan2A - tanA is equal to ______.
If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.