Advertisements
Advertisements
Question
Reduce each of the following expressions to the sine and cosine of a single expression:
24 cos x + 7 sin x
Solution
\[\text{ Let } f(x) = 24 \cos x + 7\sin x\]
\[\text{ Dividing and multiplying by } \sqrt{{24}^2 + 7^2}, i . e . \text{ by 25, we get }: \]
\[ f(x) = 25\left( \frac{24}{25} \cos x + \frac{7}{25}\sin x \right)\]
\[ \Rightarrow f(x) = 25(\sin\alpha \cos x + \cos\alpha \sin x), \text{ where } \sin\alpha = \frac{24}{25} and \cos\alpha = \frac{7}{25}\]
\[ \Rightarrow f(x) = 25 \sin(\alpha + x), \text{ where } \tan\alpha = \frac{24}{7} . \]
\[\text{ Again }, \]
\[ f(x) = 25\left( \frac{24}{25} \cos x + \frac{7}{25}\sin x \right)\]
\[ \Rightarrow f(x) = 25(\cos\alpha \cos x + \sin\alpha \sin x), \text{ where } \cos\alpha = \frac{24}{25}, \sin\alpha = \frac{7}{25} . \]
\[ \Rightarrow f(x) = 25 \cos(\alpha - x), \text{ where }\tan\alpha = \frac{7}{24} .\]
APPEARS IN
RELATED QUESTIONS
Prove that `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
Prove the following:
`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) = cot^2 x`
Prove the following:
sin2 6x – sin2 4x = sin 2x sin 10x
Prove the following:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
Prove the following:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)
If \[\tan A = \frac{3}{4}, \cos B = \frac{9}{41}\], where π < A < \[\frac{3\pi}{2}\] and 0 < B <\[\frac{\pi}{2}\], find tan (A + B).
Prove that
Prove that
Prove that:
Prove that:
Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]
Prove that:
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x
Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]
If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
Prove that:
\[\frac{1}{\sin \left( x - a \right) \sin \left( x - b \right)} = \frac{\cot \left( x - a \right) - \cot \left( x - b \right)}{\sin \left( a - b \right)}\]
Prove that:
If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.
If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).
Find the maximum and minimum values of each of the following trigonometrical expression:
\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]
If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B.
If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to
If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x
Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x
If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.
If tan θ = 3 and θ lies in third quadrant, then the value of sin θ ______.
If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.