English

Find the Maximum and Minimum Values of Each of the Following Trigonometrical Expression: 5 Cos X + 3 Sin ( π 6 − X ) + 4 - Mathematics

Advertisements
Advertisements

Question

Find the maximum and minimum values of each of the following trigonometrical expression: 

\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]

Short Note

Solution

\[\text{ Let } f\left( x \right) = 5 \cos x + 3 \sin\left( \frac{\pi}{6} - x \right) + 4\]
\[\text{ Now } f\left( x \right) = 5\cos x + 3\left( \sin30°\cos x - \cos30°\sin x \right) + 4\]  
\[ = 5\cos x + \frac{3}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x + 4\]
\[ = \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x + 4\]
\[\text{ We know that }\]
\[ - \sqrt{\left( \frac{13}{2} \right)^2 + \left( - \frac{3\sqrt{3}}{2} \right)^2} \leq \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x \leq \sqrt{\left( \frac{13}{2} \right)^2 + \left( - \frac{3\sqrt{3}}{2} \right)^2} \text{ for all x }\]
\[\text{ Therefore }, \]
\[ - \sqrt{\frac{169 + 27}{4}} \leq \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x \leq \sqrt{\frac{169 + 27}{4}}\]
\[ \Rightarrow - \frac{14}{2} + 4 \leq \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x + 4 \leq \frac{14}{2} + 4\]
\[ \Rightarrow - 3 \leq \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x + 4 \leq 11\]
\[\text{ Hence, maximum and minimun values of } f\left( x \right) \text{ are 11 and - 3, respectively } .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.2 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.2 | Q 1.3 | Page 26

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that: `2 sin^2  (3pi)/4 + 2 cos^2  pi/4  + 2 sec^2  pi/3 = 10`


Find the value of: sin 75°


Prove the following:

`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) =  cot^2 x`


Prove the following:

sin2 6x – sin2 4x = sin 2x sin 10x


Prove the following:

`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`


Prove that: `(cos x  + cos y)^2 + (sin x - sin y )^2 =  4 cos^2  (x + y)/2`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:

sin (A + B)

 


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)


Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°


Prove that:

\[\sin\left( \frac{4\pi}{9} + 7 \right)\cos\left( \frac{\pi}{9} + 7 \right) - \cos\left( \frac{4\pi}{9} + 7 \right)\sin\left( \frac{\pi}{9} + 7 \right) = \frac{\sqrt{3}}{2}\]

 


Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)


Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1


If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).

 

Prove that:

\[\frac{1}{\sin \left( x - a \right) \cos \left( x - b \right)} = \frac{\cot \left( x - a \right) + \tan \left( x - b \right)}{\cos \left( a - b \right)}\]

 


Reduce each of the following expressions to the sine and cosine of a single expression: 

\[\sqrt{3} \sin x - \cos x\] 


Reduce each of the following expressions to the sine and cosine of a single expression: 

24 cos x + 7 sin 


Write the maximum value of 12 sin x − 9 sin2 x


If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 


If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to


If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =


If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to

 

The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is

 

If sin (π cos x) = cos (π sin x), then sin 2x = ______.


If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =


If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is

 

If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =


Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x


Express the following as the sum or difference of sines and cosines:
 2 cos 7x cos 3x


Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.


If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2

[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]


If tan θ = 3 and θ lies in third quadrant, then the value of sin θ  ______.


The value of tan3A - tan2A - tanA is equal to ______.


If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.


If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.


3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.


In the following match each item given under the column C1 to its correct answer given under the column C2:

Column A Column B
(a) sin(x + y) sin(x – y) (i) cos2x – sin2y
(b) cos (x + y) cos (x – y) (ii) `(1 - tan theta)/(1 + tan theta)`
(c) `cot(pi/4 + theta)` (iii) `(1 + tan theta)/(1 - tan theta)`
(d) `tan(pi/4 + theta)` (iv) sin2x – sin2y

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×