Advertisements
Advertisements
Question
Find the maximum and minimum values of each of the following trigonometrical expression:
\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]
Solution
\[\text{ Let } f\left( x \right) = 5 \cos x + 3 \sin\left( \frac{\pi}{6} - x \right) + 4\]
\[\text{ Now } f\left( x \right) = 5\cos x + 3\left( \sin30°\cos x - \cos30°\sin x \right) + 4\]
\[ = 5\cos x + \frac{3}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x + 4\]
\[ = \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x + 4\]
\[\text{ We know that }\]
\[ - \sqrt{\left( \frac{13}{2} \right)^2 + \left( - \frac{3\sqrt{3}}{2} \right)^2} \leq \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x \leq \sqrt{\left( \frac{13}{2} \right)^2 + \left( - \frac{3\sqrt{3}}{2} \right)^2} \text{ for all x }\]
\[\text{ Therefore }, \]
\[ - \sqrt{\frac{169 + 27}{4}} \leq \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x \leq \sqrt{\frac{169 + 27}{4}}\]
\[ \Rightarrow - \frac{14}{2} + 4 \leq \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x + 4 \leq \frac{14}{2} + 4\]
\[ \Rightarrow - 3 \leq \frac{13}{2}\cos x - \frac{3\sqrt{3}}{2}\sin x + 4 \leq 11\]
\[\text{ Hence, maximum and minimun values of } f\left( x \right) \text{ are 11 and - 3, respectively } .\]
APPEARS IN
RELATED QUESTIONS
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Find the value of: sin 75°
Prove the following:
`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) = cot^2 x`
Prove the following:
sin2 6x – sin2 4x = sin 2x sin 10x
Prove the following:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
Prove that: `(cos x + cos y)^2 + (sin x - sin y )^2 = 4 cos^2 (x + y)/2`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
Prove that:
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
Prove that:
Reduce each of the following expressions to the sine and cosine of a single expression:
\[\sqrt{3} \sin x - \cos x\]
Reduce each of the following expressions to the sine and cosine of a single expression:
24 cos x + 7 sin x
Write the maximum value of 12 sin x − 9 sin2 x.
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =
If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =
If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is
If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =
Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x
Express the following as the sum or difference of sines and cosines:
2 cos 7x cos 3x
Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.
If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2
[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]
If tan θ = 3 and θ lies in third quadrant, then the value of sin θ ______.
The value of tan3A - tan2A - tanA is equal to ______.
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.
If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
In the following match each item given under the column C1 to its correct answer given under the column C2:
Column A | Column B |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos (x + y) cos (x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |