हिंदी

Find the Maximum and Minimum Values of Each of the Following Trigonometrical Expression: 5 Cos X + 3 Sin ( π 6 − X ) + 4 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the maximum and minimum values of each of the following trigonometrical expression: 

5cosx+3sin(π6x)+4

टिप्पणी लिखिए

उत्तर

 Let f(x)=5cosx+3sin(π6x)+4
 Now f(x)=5cosx+3(sin30°cosxcos30°sinx)+4  
=5cosx+32cosx332sinx+4
=132cosx332sinx+4
 We know that 
(132)2+(332)2132cosx332sinx(132)2+(332)2 for all x 
 Therefore ,
169+274132cosx332sinx169+274
142+4132cosx332sinx+4142+4
3132cosx332sinx+411
 Hence, maximum and minimun values of f(x) are 11 and - 3, respectively .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.2 | Q 1.3 | पृष्ठ २६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove the following: cos(π4×x)cos(π4-y)-sin(π4- x)sin(π4 -y)= sin(x+y)


Prove the following:

cos(3π2+x)cos(2π+x)[cot(3π2-x)+cot(2π+x)]=1


Prove the following:

tan4x=4tanx(1-tan2x)1-6tan2x+tan4x


Prove the following:

cos 4x = 1 – 8sinx cosx


Prove the following:

cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1


If sinA=45 and cosB=513, where 0 < A, B<π2, find the value of the following:
cos (A + B)


If cosA=2425 and cosB=35, where π < A < 3π2 and 3π2< B < 2π, find the following:
sin (A + B)


If cosA=2425 and cosB=35, where π < A < 3π2 and 3π2< B < 2π, find the following:
cos (A + B)


If tanA=34,cosB=941, where π < A < 3π2 and 0 < B <π2, find tan (A + B).

 


If sinA=12,cosB=32, where π2 < A < π and 0 < B < π2, find the following:
tan (A + B)


If sinA=12,cosB=32, where π2 < A < π and 0 < B < π2, find the following:
tan (A - B)


If cosA=1213 and cotB=247, where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)


Prove that

cos11+sin11cos11sin11=tan56

Prove that:

sin(4π9+7)cos(π9+7)cos(4π9+7)sin(π9+7)=32

 


Prove that tan69+tan661tan69tan66=1.


Prove that: sin(A+B)+sin(AB)cos(A+B)+cos(AB)=tanA


Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x


Reduce each of the following expressions to the sine and cosine of a single expression: 

24 cos x + 7 sin 


If cos(xy)cos(x+y)=mn  then write the value of tan x tan y


If a = b cos2π3=ccos4π3 then write the value of ab + bc + ca.  


If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 


tan 3A − tan 2A − tan A =


If A + B + C = π, then tanA+tanB+tanCtanAtanBtanC is equal to

 

If sin (π cos x) = cos (π sin x), then sin 2x = ______.


If tan (A − B) = 1 and sec (A + B) = 23, the smallest positive value of B is

 

If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to 


The maximum value of sin2(2π3+x)+sin2(2π3x) is


Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x


If cotθ + tanθ = 2cosecθ, then find the general value of θ.


The value of tan3A - tan2A - tanA is equal to ______.


If α + β = π4, then the value of (1 + tan α)(1 + tan β) is ______.


Given x > 0, the values of f(x) = -3cos3+x+x2 lie in the interval ______.


State whether the statement is True or False? Also give justification.

If tan(π cosθ) = cot(π sinθ), then cos(θ-π4)=±122.


In the following match each item given under the column C1 to its correct answer given under the column C2:

Column A Column B
(a) sin(x + y) sin(x – y) (i) cos2x – sin2y
(b) cos (x + y) cos (x – y) (ii) 1-tanθ1+tanθ
(c) cot(π4+θ) (iii) 1+tanθ1-tanθ
(d) tan(π4+θ) (iv) sin2x – sin2y

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.