हिंदी

Prove the following: tan4x=4tanx(1-tan2x)1-6tan2x+tan4x - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following:

`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`

योग

उत्तर

`tan4 = tan 2 (2x) = (2tan2x)/(1 - tan^2 2x)`

= `(2tan 2x)/(1 - tan^2 (2x))`

= `((2tanx)/(1 - tan^2x))/(1 - (2tan^x)/(1 -  tan^2x) `

= `(4tanx (1 - tan^2 x))/((1 - tan^2x)^2 - 4 tan^2 x)`

= `(4tanx ( 1 -  tan^2 x))/(1 - 2 tan^2x+ tan^2 x - 4tan^2`

= `(4tanx (1 - tan^2x))/(1 + tan^4 x - 6 tan^2x)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise 3.3 [पृष्ठ ७४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Exercise 3.3 | Q 23 | पृष्ठ ७४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove the following:

`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`


Prove the following:

`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`


Prove the following:

cos 4x = 1 – 8sinx cosx


Prove the following:

cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1


Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)


If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)


Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°


Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°


Evaluate the following:
 cos 80° cos 20° + sin 80° sin 20°


Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]


Prove that

\[\frac{\cos 11^\circ + \sin 11^\circ}{\cos 11^\circ - \sin 11^\circ} = \tan 56^\circ\]

Prove that:

\[\sin\left( \frac{3\pi}{8} - 5 \right)\cos\left( \frac{\pi}{8} + 5 \right) + \cos\left( \frac{3\pi}{8} - 5 \right)\sin\left( \frac{\pi}{8} + 5 \right) = 1\]

 


If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].


Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.


Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)


Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]


If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].


If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).

 

If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.


Reduce each of the following expressions to the sine and cosine of a single expression: 

\[\sqrt{3} \sin x - \cos x\] 


Write the maximum value of 12 sin x − 9 sin2 x


If A + B = C, then write the value of tan A tan B tan C.


The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is

 

If sin (π cos x) = cos (π sin x), then sin 2x = ______.


If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =


Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x


Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa


The value of sin(45° + θ) - cos(45° - θ) is ______.


If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.


If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.


3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.


Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.


State whether the statement is True or False? Also give justification.

If tanA = `(1 - cos B)/sinB`, then tan2A = tanB


State whether the statement is True or False? Also give justification.

If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`


State whether the statement is True or False? Also give justification.

If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×