Advertisements
Advertisements
प्रश्न
If A + B = C, then write the value of tan A tan B tan C.
उत्तर
\[\tan A \tan B \tan C = \tan A \tan B \tan(A + B) \left[ \text{ Using } A + B = C \right]\]
\[ = \tan A \tan B \times \frac{\tan A + \tan B}{1 - \tan A \tan B}\]
\[ = \frac{\tan^2 A\tan B + \tan A \tan^2 B}{1 - \tan A \tan B}\]
\[ = \frac{\tan^2 A\tan B + \tan A \tan^2 B + \tan A + \tan B - \tan A - \tan B}{1 - \tan A \tan B}\]
\[ = \frac{- \tan A(1 - \tan A\tan B) - \tan B(1 - \tan A\tan B) + \tan A + \tan B}{1 - \tan A \tan B}\]
\[ = \frac{- (1 - \tan A\tan B)\left( \tan A + \tan B \right) + \tan A + \tan B}{1 - \tan A \tan B}\]
\[ = \frac{\tan A + \tan B}{1 - \tan A \tan B} - \tan A - \tan B \]
\[ = \tan(A + B) - \tan A - \tan B\]
\[ = \tan C - \tan A - \tan B\]
\[\]
APPEARS IN
संबंधित प्रश्न
Prove that `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
Prove that `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
Find the value of: sin 75°
Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
Prove the following:
`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) = cot^2 x`
Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)
Prove that:
Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].
If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].
Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]
Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]
Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].
If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).
If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.
If angle \[\theta\] is divided into two parts such that the tangents of one part is \[\lambda\] times the tangent of other, and \[\phi\] is their difference, then show that\[\sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]
If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).
Find the maximum and minimum values of each of the following trigonometrical expression:
sin x − cos x + 1
If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ.
Write the maximum and minimum values of 3 cos x + 4 sin x + 5.
Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies.
If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\]
If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then
Express the following as the sum or difference of sines and cosines:
2 cos 7x cos 3x
If cotθ + tanθ = 2cosecθ, then find the general value of θ.
If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2
[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]
If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`
[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]
If tan θ = 3 and θ lies in third quadrant, then the value of sin θ ______.
The value of tan3A - tan2A - tanA is equal to ______.
If sinx + cosx = a, then |sinx – cosx| = ______.
State whether the statement is True or False? Also give justification.
If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`