Advertisements
Advertisements
प्रश्न
State whether the statement is True or False? Also give justification.
If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`
विकल्प
True
False
उत्तर
This statement is True.
Explanation:
Given that: cosecx = 1 + cotx
⇒ `1/sinx = 1 + cosx/sinx`
⇒ `1/sinx = 1 + (sinx + cosx)/sinx`
⇒ sinx + cosx = 1
⇒ `1/sqrt(2) sinx + 1/sqrt(2) cosx = 1/sqrt(2)`
⇒ `sin pi/4 sinx + cos pi/4 cos x = 1/sqrt(2)`
⇒ `cos(x - pi/4) = 1/sqrt(2)`
⇒ `cos(x - pi/4) = cos pi/4`
x = `2"n"pi + pi/4 + pi/4`
⇒ x = `2"n"pi + pi/2`
or x = `2"n"pi + pi/4 - pi/4`
⇒ x = 2nπ.
APPEARS IN
संबंधित प्रश्न
Prove the following:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
Prove the following:
`(sin x - siny)/(cos x + cos y)= tan (x -y)/2`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].
Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x
Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x
Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]
Prove that:
If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).
Find the maximum and minimum values of each of the following trigonometrical expression:
sin x − cos x + 1
Reduce each of the following expressions to the sine and cosine of a single expression:
cos x − sin x
Reduce each of the following expressions to the sine and cosine of a single expression:
24 cos x + 7 sin x
Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\] lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]
Write the maximum and minimum values of 3 cos x + 4 sin x + 5.
If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\]
If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
If sinx + cosx = a, then sin6x + cos6x = ______.
If sinx + cosx = a, then |sinx – cosx| = ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.