Advertisements
Advertisements
प्रश्न
Reduce each of the following expressions to the sine and cosine of a single expression:
cos x − sin x
उत्तर
\[\text{ Let } f\left( x \right) = \cos x - \sin x\]
\[\text{ Dividing and multiplying by } \sqrt{1^2 + 1^2}, i . e . \text{ by }\sqrt{2,} \text{ we get } : \]
\[ f\left( x \right) = \sqrt{2}\left( \frac{1}{\sqrt{2}}\cos x - \frac{1}{\sqrt{2}}\sin x \right)\]
\[ \Rightarrow f\left( x \right) = \sqrt{2}(\cos45°\cos x - \sin45°\sin x) \]
\[ \Rightarrow f\left( x \right) = \sqrt{2}\cos\left( \frac{\pi}{4} + x \right)\]
\[\text{ Again }, \]
\[ f\left( x \right) = \sqrt{2}\left( \frac{1}{\sqrt{2}}\cos x - \frac{1}{\sqrt{2}}\sin x \right)\]
\[ \Rightarrow f\left( x \right) = \sqrt{2}(\sin45°\cos x - \cos45∏\sin x)\]
\[ \Rightarrow f(x) = \sqrt{2} \sin\left( \frac{\pi}{4} - x \right)\]
APPEARS IN
संबंधित प्रश्न
Prove that `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
Prove the following:
sin2 6x – sin2 4x = sin 2x sin 10x
Prove the following:
sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x
Prove the following:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Prove the following:
`(sin x - siny)/(cos x + cos y)= tan (x -y)/2`
Prove the following:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
Prove the following:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`
Prove that: sin 3x + sin 2x – sin x = 4sin x `cos x/2 cos (3x)/2`
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]
Prove that
Prove that:
If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].
Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x
If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.
If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].
Find the maximum and minimum values of each of the following trigonometrical expression:
sin x − cos x + 1
Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\] lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]
Write the maximum and minimum values of 3 cos x + 4 sin x + 5.
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
If A + B = C, then write the value of tan A tan B tan C.
tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to
If cot (α + β) = 0, sin (α + 2β) is equal to
The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is
If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then
If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =
Express the following as the sum or difference of sines and cosines:
2 cos 7x cos 3x
If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.
If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.
[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]
The value of tan3A - tan2A - tanA is equal to ______.
If sinx + cosx = a, then sin6x + cos6x = ______.
State whether the statement is True or False? Also give justification.
If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.