Advertisements
Advertisements
प्रश्न
If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.
उत्तर
\[\text{ RHS }= m^2 + n^2 - 2\]
\[ = \left( \cos A + \sin B \right)^2 + \left( \sin A + \cos B \right)^2 - 2\]
\[ = \cos^2 A + \sin^2 B + 2\cos A\sin B + \sin^2 A + \cos {}^2 B + 2\sin A\cos B - 2\]
\[ = 1 + 1 + 2\cos A\sin B + 2\sin A\cos B - 2\]
\[ = 2\left( \cos A\sin B + \sin A \cos B \right)\]
\[ = 2\sin\left( A + B \right)\]
= LHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the value of: sin 75°
Find the value of: tan 15°
Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
Prove the following:
sin2 6x – sin2 4x = sin 2x sin 10x
Prove the following:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Prove the following:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)
If \[\tan A = \frac{3}{4}, \cos B = \frac{9}{41}\], where π < A < \[\frac{3\pi}{2}\] and 0 < B <\[\frac{\pi}{2}\], find tan (A + B).
If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
Prove that
Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]
If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.
If sin α + sin β = a and cos α + cos β = b, show that
Reduce each of the following expressions to the sine and cosine of a single expression:
\[\sqrt{3} \sin x - \cos x\]
Reduce each of the following expressions to the sine and cosine of a single expression:
cos x − sin x
If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ.
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\]
tan 3A − tan 2A − tan A =
If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to
If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then
If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =
If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to
Express the following as the sum or difference of sines and cosines:
2 cos 7x cos 3x
Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
If tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.
The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.
If sinx + cosx = a, then sin6x + cos6x = ______.
If sinx + cosx = a, then |sinx – cosx| = ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.
The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.
State whether the statement is True or False? Also give justification.
If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.