Advertisements
Advertisements
प्रश्न
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)
उत्तर
Given:
\[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\]
\[\text{ and }\pi < A < \frac{3\pi}{2}\text{ and }\frac{3\pi}{2} < B < 2\pi . \]
That is, A is in third quadrant and B is in fourth qudrant.
We know that sine function is negative in third and fourth quadrants.
Therefore,
\[\sin A = - \sqrt{1 - \cos^2 A}\text{ and }\sin B = - \sqrt{1 - \cos^2 B}\]
\[ \Rightarrow \sin A = \sqrt{1 - \left( \frac{- 24}{25} \right)^2}\text{ and }\sin B = - \sqrt{1 - \left( \frac{3}{5} \right)^2}\]
\[ \Rightarrow \sin A = - \sqrt{1 - \frac{576}{625}}\text{ and }\sin B = - \sqrt{1 - \frac{9}{25}}\]
\[ \Rightarrow \sin A = - \sqrt{\frac{49}{625}}\text{ and }\sin B = - \sqrt{\frac{16}{25}}\]
\[ \Rightarrow \sin A = \frac{- 7}{25}\text{ and }\sin B = \frac{- 4}{5}\]
Now
\[ \sin\left( A + B \right) = \sin A \cos B + \cos A \sin B\]
\[ = \frac{- 7}{25} \times \frac{3}{5} + \frac{- 24}{25} \times \frac{- 4}{5}\]
\[ = \frac{- 21}{125} + \frac{96}{125}\]
\[ = \frac{75}{125}\]
\[\frac{3}{5}\]
APPEARS IN
संबंधित प्रश्न
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Prove the following:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Prove the following:
`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`
Prove the following:
`(sin x - sin 3x)/(sin^2 x - cos^2 x) = 2sin x`
Prove the following:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Prove that: sin 3x + sin 2x – sin x = 4sin x `cos x/2 cos (3x)/2`
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)
Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]
Prove that:
Prove that:
Prove that:
If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].
Prove that:
Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].
Prove that:
\[\frac{1}{\sin \left( x - a \right) \sin \left( x - b \right)} = \frac{\cot \left( x - a \right) - \cot \left( x - b \right)}{\sin \left( a - b \right)}\]
If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.
Reduce each of the following expressions to the sine and cosine of a single expression:
\[\sqrt{3} \sin x - \cos x\]
Write the maximum and minimum values of 3 cos x + 4 sin x + 5.
The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\]
If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =
If cot (α + β) = 0, sin (α + 2β) is equal to
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is
If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is
If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to
Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa
If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.
If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.
[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.
If sinx + cosx = a, then |sinx – cosx| = ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.