हिंदी

If cos A = − 12 13 and cot B = 24 7 , where A lies in the second quadrant and B in the third quadrant, find the values of the following: cos (A + B) - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)

टिप्पणी लिखिए

उत्तर

Given:
\[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\]
A lies in thesecond quadrant and B lies in the third quadrant . 
We know that sine function is positive in thesecond quadrant and in thethird quadrant, both sine and cosine functions are negative.
Therefore, 
\[\sin A = \sqrt{1 - \cos^2 A} = \sqrt{1 - \left( \frac{- 12}{13} \right)^2} = \sqrt{1 - \frac{144}{169}} = \sqrt{\frac{25}{169}} = \frac{5}{13}\]
\[\sin B = - \frac{1}{\sqrt{1 + \cot^2 B}} = - \frac{1}{\sqrt{1 + \left( \frac{24}{7} \right)^2}} = \frac{- 1}{\sqrt{1 + \frac{576}{49}}} = \frac{- 1}{\sqrt{\frac{625}{49}}} = \frac{- 7}{25}\]
\[\cos B = - \sqrt{1 - \sin^2 B} = - \sqrt{1 - \left( \frac{- 7}{25} \right)^2} = - \sqrt{1 - \frac{49}{625}} = - \sqrt{\frac{576}{625}} = - \frac{24}{25}\]
Now,
\[\cos\left( A + B \right) = \cos A \cos B - \sin A \sin B\]
\[ = \frac{- 12}{13} \times \frac{- 24}{25} - \frac{5}{13} \times \frac{- 7}{25}\]
\[ = \frac{288}{325} + \frac{35}{325}\]
\[ = \frac{323}{325}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 8.2 | पृष्ठ १९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that: `2 sin^2  (3pi)/4 + 2 cos^2  pi/4  + 2 sec^2  pi/3 = 10`


Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


Prove the following:

`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) =  cot^2 x`


Prove the following:

sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x


Prove the following:

cos2 2x – cos2 6x = sin 4x sin 8x


Prove the following:

`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`


Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)


Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]


Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1


If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).


If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).

 

If sin α + sin β = a and cos α + cos β = b, show that

\[\cos \left( \alpha + \beta \right) = \frac{b^2 - a^2}{b^2 + a^2}\]

If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].


Reduce each of the following expressions to the sine and cosine of a single expression: 

\[\sqrt{3} \sin x - \cos x\] 


If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\]  then write the value of tan x tan y


If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 


The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\] 


If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to


tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to 


If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =


\[\frac{\cos 10^\circ + \sin 10^\circ}{\cos 10^\circ - \sin 10^\circ} =\]

 


The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is

 

The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is


If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ


If cotθ + tanθ = 2cosecθ, then find the general value of θ.


If f(x) = cos2x + sec2x, then ______.

[Hint: A.M ≥ G.M.]


If tan θ = 3 and θ lies in third quadrant, then the value of sin θ  ______.


If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.


3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.


The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.


State whether the statement is True or False? Also give justification.

If tanA = `(1 - cos B)/sinB`, then tan2A = tanB


State whether the statement is True or False? Also give justification.

If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×