हिंदी

Prove That: Tan 36° + Tan 9° + Tan 36° Tan 9° = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1

टिप्पणी लिखिए

उत्तर

\[\text{ We know that }36^\circ + 9^\circ = 45^\circ\]
Therefore, 
\[ \tan\left( 36^\circ + 9^\circ \right) = \tan45^\circ\]
\[ \Rightarrow \frac{\tan36^\circ + \tan9^\circ}{1 - \tan36^\circ \tan9^\circ} = 1\]
\[ \Rightarrow \tan36^\circ + \tan9^\circ = 1 - \tan36^\circ \tan9^\circ\]
\[ \Rightarrow \tan36^\circ + \tan9^\circ + \tan36^\circ \tan9^\circ = 1\]
Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [पृष्ठ २०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 17.3 | पृष्ठ २०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that  `cot^2  pi/6 + cosec  (5pi)/6 + 3 tan^2  pi/6 = 6`


Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


Prove the following:

`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) =  cot^2 x`


Prove the following:

sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x


Prove the following:

cos2 2x – cos2 6x = sin 4x sin 8x


Prove the following:

cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x) 


Prove the following:

`(sin x -  siny)/(cos x + cos y)= tan  (x -y)/2`


Prove the following:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)


If \[\tan A = \frac{3}{4}, \cos B = \frac{9}{41}\], where π < A < \[\frac{3\pi}{2}\] and 0 < B <\[\frac{\pi}{2}\], find tan (A + B).

 


Evaluate the following:
 cos 80° cos 20° + sin 80° sin 20°


Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.


If sin α + sin β = a and cos α + cos β = b, show that

\[\cos \left( \alpha + \beta \right) = \frac{b^2 - a^2}{b^2 + a^2}\]

Prove that:
\[\frac{1}{\sin \left( x - a \right) \sin \left( x - b \right)} = \frac{\cot \left( x - a \right) - \cot \left( x - b \right)}{\sin \left( a - b \right)}\]


Prove that:

\[\frac{1}{\sin \left( x - a \right) \cos \left( x - b \right)} = \frac{\cot \left( x - a \right) + \tan \left( x - b \right)}{\cos \left( a - b \right)}\]

 


If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.


If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).

 

Find the maximum and minimum values of each of the following trigonometrical expression: 

12 cos x + 5 sin x + 4 


Show that sin 100° − sin 10° is positive. 


Write the maximum and minimum values of 3 cos x + 4 sin x + 5. 


If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B


If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\]  then write the value of tan x tan y


If A + B = C, then write the value of tan A tan B tan C.


If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\] 


If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to


tan 3A − tan 2A − tan A =


If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is

 


\[\frac{\cos 10^\circ + \sin 10^\circ}{\cos 10^\circ - \sin 10^\circ} =\]

 


If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is

 

If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =


Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x


If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.


Match each item given under column C1 to its correct answer given under column C2.

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`

If sinθ + cosθ = 1, then find the general value of θ.


If cotθ + tanθ = 2cosecθ, then find the general value of θ.


Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2

[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]


If f(x) = cos2x + sec2x, then ______.

[Hint: A.M ≥ G.M.]


If tanα = `m/(m +  1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.


State whether the statement is True or False? Also give justification.

If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×