हिंदी

If α and β Are Two Solutions of the Equation a Tan X + B Sec X = C, Then Find the Values of Sin (α + β) and Cos (α + β). - Mathematics

Advertisements
Advertisements

प्रश्न

If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).

 
संक्षेप में उत्तर

उत्तर

\[a \tan x + b \sec x = c\]
\[ \Rightarrow \left( c - a \tan x \right) = b \sec x\]
\[ \Rightarrow \left( c - a \tan x \right)^2 = \left( b \sec x \right)^2 \]
\[ \Rightarrow c^2 + a^2 \tan^2 x - 2ac \tan x = b^2 \sec^2 x\]
\[ \Rightarrow c^2 + a^2 \tan^2 x - 2ac \tan x = b^2 \left( 1 + \tan^2 x \right)\]
\[ \Rightarrow \left( a^2 - b^2 \right) \tan^2 x - 2ac \tan x + \left( c^2 - b^2 \right) = 0\]
This is a quadratic in tan x.
\[\text{ It has two solutions }\tan \alpha\text{ and }\tan \beta . \]
\[\tan \alpha + \tan \beta = \frac{2ac}{a^2 - b^2}\]
\[\tan \alpha \times \tan \beta = \frac{c^2 - b^2}{a^2 - b^2}\]
\[\text{Therefore, }\tan\left( \alpha + \beta \right) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha\tan \beta}\]
\[ = \frac{\frac{2ac}{a^2 - b^2}}{1 - \frac{c^2 - b^2}{a^2 - b^2}}\]
\[ = \frac{2ac}{a^2 - c^2}\]
\[\text{Hence, }\sin\left( \alpha + \beta \right) = \frac{2ac}{a^2 + c^2}\text{ and }\cos\left( \alpha + \beta \right) = \frac{a^2 - c^2}{a^2 + c^2} .\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 34 | पृष्ठ २१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that: `2 sin^2  (3pi)/4 + 2 cos^2  pi/4  + 2 sec^2  pi/3 = 10`


Find the value of: tan 15°


Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


Prove the following:

`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`


Prove the following:

sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x


Prove the following:

sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x


Prove the following:

`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A − B)


If \[\tan A = \frac{3}{4}, \cos B = \frac{9}{41}\], where π < A < \[\frac{3\pi}{2}\] and 0 < B <\[\frac{\pi}{2}\], find tan (A + B).

 


Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)


Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]


Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x


Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x


Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]


If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]


If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].


If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.


Show that sin 100° − sin 10° is positive. 


Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\]  lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]


If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ. 


The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\] 


If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\] 


If sin (π cos x) = cos (π sin x), then sin 2x = ______.


The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is


If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to 


If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.

[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]


Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2

[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]


If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.


The value of tan3A - tan2A - tanA is equal to ______.


If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.


3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.


In the following match each item given under the column C1 to its correct answer given under the column C2:

Column A Column B
(a) sin(x + y) sin(x – y) (i) cos2x – sin2y
(b) cos (x + y) cos (x – y) (ii) `(1 - tan theta)/(1 + tan theta)`
(c) `cot(pi/4 + theta)` (iii) `(1 + tan theta)/(1 - tan theta)`
(d) `tan(pi/4 + theta)` (iv) sin2x – sin2y

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×