Advertisements
Advertisements
प्रश्न
If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].
उत्तर
\[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\]
Dividing numerator and denominator on the RHS by \[\cos\alpha\], we get
\[\tan\theta = \frac{\frac{\sin\alpha}{\cos\alpha} - 1}{\frac{\sin\alpha}{\cos\alpha} + 1}\]
\[ \Rightarrow \tan\theta = \frac{\tan\alpha - \tan\frac{\pi}{4}}{1 + \tan\alpha \tan\frac{\pi}{4}}\]
\[ \Rightarrow \tan\theta = \tan\left( \alpha - \frac{\pi}{4} \right)\]
\[ \Rightarrow \theta = \alpha - \frac{\pi}{4}\]
\[\text{ Or }\alpha = \frac{\pi}{4} + \theta\]
Now,
\[\sin\alpha + \cos\alpha\]
\[ = \sin\left( \frac{\pi}{4} + \theta \right) + \cos\left( \frac{\pi}{4} + \theta \right)\]
\[ = \sin\frac{\pi}{4}\cos\theta + \cos\frac{\pi}{4}\sin\theta + \cos\frac{\pi}{4}\cos\theta - \sin\frac{\pi}{4}\sin\theta\]
\[ = \frac{1}{\sqrt{2}}\cos\theta + \frac{1}{\sqrt{2}}\sin\theta + \frac{1}{\sqrt{2}}\cos\theta - \frac{1}{\sqrt{2}}\sin\theta\]
\[ = \frac{2}{\sqrt{2}}\cos\theta\]
\[ = \sqrt{2}\cos\theta\]
\[\therefore \sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\]
APPEARS IN
संबंधित प्रश्न
Prove the following:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`
Prove the following:
`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`
Prove that: `(cos x + cos y)^2 + (sin x - sin y )^2 = 4 cos^2 (x + y)/2`
Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)
If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).
If \[\tan A = \frac{3}{4}, \cos B = \frac{9}{41}\], where π < A < \[\frac{3\pi}{2}\] and 0 < B <\[\frac{\pi}{2}\], find tan (A + B).
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)
Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°
Prove that:
If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].
Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]
Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:
If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
If sin α + sin β = a and cos α + cos β = b, show that
Find the maximum and minimum values of each of the following trigonometrical expression:
12 sin x − 5 cos x
Reduce each of the following expressions to the sine and cosine of a single expression:
\[\sqrt{3} \sin x - \cos x\]
Reduce each of the following expressions to the sine and cosine of a single expression:
24 cos x + 7 sin x
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\]
If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\]
If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =
If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is
Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α
If sinθ + cosθ = 1, then find the general value of θ.
The value of tan3A - tan2A - tanA is equal to ______.
If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.
The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.
State whether the statement is True or False? Also give justification.
If tanA = `(1 - cos B)/sinB`, then tan2A = tanB