Advertisements
Advertisements
प्रश्न
If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.
विकल्प
1
2
–2
Not defined
उत्तर
If α + β = `pi/4`, then the value of (1 + tanα)(1 + tanβ) is 2.
Explanation:
Given that: α + β = `pi/4`
⇒ `(tanalpha + tanbeta)/(1 - tanalpha tanbeta)` = 1
⇒ tanα + tanβ = 1 – tanα tanβ
⇒ tanα + tanβ + tanα tanβ = 1
⇒ 1 + tanα + tanβ + tanα tanβ = 1 + 1
⇒ 1(1 + tanα) + tanβ(1 + tanα) = 2
⇒ (1 + tanα)(1 + tanβ) = 2
APPEARS IN
संबंधित प्रश्न
Prove the following:
`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`
Prove the following:
`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`
Prove the following:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
Prove the following:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
Prove that: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2 (x - y)/2`
Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)
Prove that:
Prove that:
If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.
If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:
If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.
If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].
If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).
Reduce each of the following expressions to the sine and cosine of a single expression:
cos x − sin x
If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ.
If x cos θ = y cos \[\left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right)\]then write the value of \[\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\]
If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is
The value of sin(45° + θ) - cos(45° - θ) is ______.
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.
If sinx + cosx = a, then |sinx – cosx| = ______.
State whether the statement is True or False? Also give justification.
If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`
State whether the statement is True or False? Also give justification.
If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`
In the following match each item given under the column C1 to its correct answer given under the column C2:
Column A | Column B |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos (x + y) cos (x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |