हिंदी

If α + β = π4, then the value of (1 + tan α)(1 + tan β) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.

विकल्प

  • 1

  • 2

  • –2

  • Not defined

MCQ
रिक्त स्थान भरें

उत्तर

If α + β = `pi/4`, then the value of (1 + tanα)(1 + tanβ) is 2.

Explanation:

Given that: α + β = `pi/4`

⇒ `(tanalpha + tanbeta)/(1 - tanalpha tanbeta)` = 1

⇒ tanα + tanβ = 1 – tanα tanβ

⇒ tanα + tanβ + tanα tanβ = 1

⇒ 1 + tanα + tanβ + tanα tanβ = 1 + 1

⇒ 1(1 + tanα) + tanβ(1 + tanα) = 2

⇒ (1 + tanα)(1 + tanβ) = 2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise [पृष्ठ ५८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Exercise | Q 51 | पृष्ठ ५८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove the following:

`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`


Prove the following:

`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`


Prove the following:

`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`


Prove the following:

`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`


Prove that: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2  (x - y)/2`


Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°


Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)


Prove that:

\[\sin\left( \frac{\pi}{3} - x \right)\cos\left( \frac{\pi}{6} + x \right) + \cos\left( \frac{\pi}{3} - x \right)\sin\left( \frac{\pi}{6} + x \right) = 1\]

 


Prove that:

\[\sin\left( \frac{3\pi}{8} - 5 \right)\cos\left( \frac{\pi}{8} + 5 \right) + \cos\left( \frac{3\pi}{8} - 5 \right)\sin\left( \frac{\pi}{8} + 5 \right) = 1\]

 


If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.

 

If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:

\[\cos \left( \frac{\pi}{6} + x \right) + \cos \left( \frac{\pi}{4} - x \right) + \cos \left( \frac{2\pi}{3} - x \right) = \left( \frac{\sqrt{3} - 1}{2} + \frac{1}{\sqrt{2}} \right)\frac{23}{17}\]

 


If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.


If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].


If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).

 

Reduce each of the following expressions to the sine and cosine of a single expression: 

cos x − sin 


If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ. 


If x cos θ = y cos \[\left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right)\]then write the value of \[\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\] 


If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to


tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to 


The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is

 

If sin (π cos x) = cos (π sin x), then sin 2x = ______.


The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is


The value of sin(45° + θ) - cos(45° - θ) is ______.


If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.


If sinx + cosx = a, then |sinx – cosx| = ______.


State whether the statement is True or False? Also give justification.

If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`


State whether the statement is True or False? Also give justification.

If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`


In the following match each item given under the column C1 to its correct answer given under the column C2:

Column A Column B
(a) sin(x + y) sin(x – y) (i) cos2x – sin2y
(b) cos (x + y) cos (x – y) (ii) `(1 - tan theta)/(1 + tan theta)`
(c) `cot(pi/4 + theta)` (iii) `(1 + tan theta)/(1 - tan theta)`
(d) `tan(pi/4 + theta)` (iv) sin2x – sin2y

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×