हिंदी

If Cos a = − 12 13 and Cot B = 24 7 , Where a Lies in the Second Quadrant and B in the Third Quadrant, Find the Values of the Following: Sin (A + B) - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)

टिप्पणी लिखिए

उत्तर

Given:
\[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\]
A lies in thesecond quadrant and B lies in the third quadrant . 
We know that sine function is positive in thesecond quadrant and in thethird quadrant, both sine and \cosine functions are negative.
Therefore, 
\[\sin A = \sqrt{1 - \cos^2 A} = \sqrt{1 - \left( \frac{- 12}{13} \right)^2} = \sqrt{1 - \frac{144}{169}} = \sqrt{\frac{25}{169}} = \frac{5}{13}\]
\[\sin B = - \frac{1}{\sqrt{1 + \cot^2 B}} = - \frac{1}{\sqrt{1 + \left( \frac{24}{7} \right)^2}} = \frac{- 1}{\sqrt{1 + \frac{576}{49}}} = \frac{- 1}{\sqrt{\frac{625}{49}}} = \frac{- 7}{25}\]
\[\cos B = - \sqrt{1 - \sin^2 B} = - \sqrt{1 - \left( \frac{- 7}{25} \right)^2} = - \sqrt{1 - \frac{49}{625}} = - \sqrt{\frac{576}{625}} = - \frac{24}{25}\]
Now,
\[\sin\left( A + B \right) = \sin A \cos B + \cos A + \sin B \]
\[ = \frac{5}{13} \times \frac{- 24}{25} + \frac{- 12}{13} \times \frac{- 7}{25}\]
\[ = \frac{- 120}{325} + \frac{84}{325}\]
\[ = \frac{- 36}{325}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 8.1 | पृष्ठ १९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the value of: sin 75°


Prove the following:

`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)


Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°


Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)


Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)


Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1


If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.

 

If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].


If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).

 

Prove that:

\[\frac{1}{\sin \left( x - a \right) \cos \left( x - b \right)} = \frac{\cot \left( x - a \right) + \tan \left( x - b \right)}{\cos \left( a - b \right)}\]

 


If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.


If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].


If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).

 

Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 


Reduce each of the following expressions to the sine and cosine of a single expression: 

cos x − sin 


Show that sin 100° − sin 10° is positive. 


If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.  


If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\] 


If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to


If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =


If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to

 

The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is

 

The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is


The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is


If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =


Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa


Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x


If tanα = `m/(m +  1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.


If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.


If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.


If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.


If sinx + cosx = a, then sin6x + cos6x = ______.


In the following match each item given under the column C1 to its correct answer given under the column C2:

Column A Column B
(a) sin(x + y) sin(x – y) (i) cos2x – sin2y
(b) cos (x + y) cos (x – y) (ii) `(1 - tan theta)/(1 + tan theta)`
(c) `cot(pi/4 + theta)` (iii) `(1 + tan theta)/(1 - tan theta)`
(d) `tan(pi/4 + theta)` (iv) sin2x – sin2y

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×