Advertisements
Advertisements
प्रश्न
If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.
विकल्प
a
b
`a/b`
None
उत्तर
If tanθ = `a/b`, then bcos2θ + asin2θ is equal to b.
Explanation:
Given that: tanθ = `a/b`
bcos2θ + asin2θ = `b[(1 - tan^2 theta)/(1 + tan^2 theta)] + a[(2 tan theta)/(1 + tan^2 theta)]`
= `b[(1 - a^2/b^2)/(1 + a^2/b^2)] + a[((2a)/b)/(1 + a^2/b^2)]`
= `b[(b^2 - a^2)/(b^2 + a^2)] + [((2a^2)/b)/((b^2 + a^2)/b^2)]`
= `(b^3 - a^2b)/(b^2 + a^2) + (2a^2b)/(b^2 + a^2)`
= `(b^3 - a^2b + 2a^2b)/(b^2 + a^2)`
= `(b^3 + a^2b)/(b^2 + a^2)`
= `(b(b^2 + a^2))/(b^2 + a^2)`
= b
APPEARS IN
संबंधित प्रश्न
Prove the following:
`(sin x - siny)/(cos x + cos y)= tan (x -y)/2`
Prove the following:
`(sin x - sin 3x)/(sin^2 x - cos^2 x) = 2sin x`
Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)
Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°
Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°
Prove that:
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]
Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x
If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.
If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.
If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].
Find the maximum and minimum values of each of the following trigonometrical expression:
\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]
Reduce each of the following expressions to the sine and cosine of a single expression:
cos x − sin x
If A + B = C, then write the value of tan A tan B tan C.
tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to
If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =
Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x
Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x
Match each item given under column C1 to its correct answer given under column C2.
C1 | C2 |
(a) `(1 - cosx)/sinx` | (i) `cot^2 x/2` |
(b) `(1 + cosx)/(1 - cosx)` | (ii) `cot x/2` |
(c) `(1 + cosx)/sinx` | (iii) `|cos x + sin x|` |
(d) `sqrt(1 + sin 2x)` | (iv) `tan x/2` |
If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2
[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]
If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.
If sinx + cosx = a, then sin6x + cos6x = ______.
The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.