हिंदी

If for real values of x, cosθ = x+1x, then ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If for real values of x, cosθ = `x + 1/x`, then ______.

विकल्प

  • θ is an acute angle.

  • θ is a right angle.

  • θ is an obtuse angle.

  • No value of θ is possible.

MCQ
रिक्त स्थान भरें

उत्तर

If for real values of x, cosθ = `x + 1/x`, then no value of θ is possible.

Explanation:

Given that: cosθ = `x + 1/x`

⇒ cosθ = `(x^2 + 1)/x`

⇒ x2 + 1 = xcosθ

⇒ x2 – xcosθ + 1 = 0

For the real value of x,

b2 – 4ac ≥ 0

⇒ (–cosθ)2 – 4 × 1 × 1 ≥ 0

⇒ cos2θ – 4 ≥ 0

⇒ cos2θ ≥ 4

⇒ cosθ ≥ ± 2   .......[– 1 ≤ cosθ ≤ 1]

So, the value of θ is not possible.

shaalaa.com
Negative Function Or Trigonometric Functions of Negative Angles
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise [पृष्ठ ५९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Exercise | Q 59 | पृष्ठ ५९
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×