Advertisements
Advertisements
प्रश्न
If for real values of x, cosθ = `x + 1/x`, then ______.
पर्याय
θ is an acute angle.
θ is a right angle.
θ is an obtuse angle.
No value of θ is possible.
उत्तर
If for real values of x, cosθ = `x + 1/x`, then no value of θ is possible.
Explanation:
Given that: cosθ = `x + 1/x`
⇒ cosθ = `(x^2 + 1)/x`
⇒ x2 + 1 = xcosθ
⇒ x2 – xcosθ + 1 = 0
For the real value of x,
b2 – 4ac ≥ 0
⇒ (–cosθ)2 – 4 × 1 × 1 ≥ 0
⇒ cos2θ – 4 ≥ 0
⇒ cos2θ ≥ 4
⇒ cosθ ≥ ± 2 .......[– 1 ≤ cosθ ≤ 1]
So, the value of θ is not possible.
APPEARS IN
संबंधित प्रश्न
Find the values of the following trigonometric ratio:
Find the values of the following trigonometric ratio:
Find the values of the following trigonometric ratio:
Find the values of the following trigonometric ratio:
Find the values of the following trigonometric ratio:
Find the values of the following trigonometric ratio:
Find the values of the following trigonometric ratio:
Find the values of the following trigonometric ratio:
Find the values of the following trigonometric ratio: