English

If for real values of x, cosθ = x+1x, then ______. - Mathematics

Advertisements
Advertisements

Question

If for real values of x, cosθ = `x + 1/x`, then ______.

Options

  • θ is an acute angle.

  • θ is a right angle.

  • θ is an obtuse angle.

  • No value of θ is possible.

MCQ
Fill in the Blanks

Solution

If for real values of x, cosθ = `x + 1/x`, then no value of θ is possible.

Explanation:

Given that: cosθ = `x + 1/x`

⇒ cosθ = `(x^2 + 1)/x`

⇒ x2 + 1 = xcosθ

⇒ x2 – xcosθ + 1 = 0

For the real value of x,

b2 – 4ac ≥ 0

⇒ (–cosθ)2 – 4 × 1 × 1 ≥ 0

⇒ cos2θ – 4 ≥ 0

⇒ cos2θ ≥ 4

⇒ cosθ ≥ ± 2   .......[– 1 ≤ cosθ ≤ 1]

So, the value of θ is not possible.

shaalaa.com
Negative Function Or Trigonometric Functions of Negative Angles
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise [Page 59]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise | Q 59 | Page 59
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×