Advertisements
Advertisements
Question
Find the values of the following trigonometric ratio:
Solution
We have:
\[cosec\left( - \frac{20\pi}{3} \right) = cosec \left( - 1200^\circ \right)\]
\[cosec \left( - 1200^\circ \right) = - cosec \left( 1200^\circ \right) = - cosec \left( 90^\circ \times 13 + 30^\circ \right)\]
\[1200^\circ\text{ lies in the second quadrant in which the cosec function is positive . }\]
Also, 13 is an odd integer .
\[ \therefore cosec\left( - 1200^\circ \right) = - cosec\left( 1200^\circ \right) = - cosec\left( 90^\circ \times 13 + 30^\circ \right) = - \sec30^\circ = - \frac{2}{\sqrt{3}}\]
APPEARS IN
RELATED QUESTIONS
Find the values of the following trigonometric ratio:
Find the values of the following trigonometric ratio:
Find the values of the following trigonometric ratio:
Find the values of the following trigonometric ratio:
Find the values of the following trigonometric ratio:
Find the values of the following trigonometric ratio:
Find the values of the following trigonometric ratio:
Find the values of the following trigonometric ratio:
If for real values of x, cosθ = `x + 1/x`, then ______.