Advertisements
Advertisements
प्रश्न
Find the values of the following trigonometric ratio:
उत्तर
We have:
\[\cos\frac{19\pi}{6} = \cos 570^\circ\]
\[570^\circ = \left( 90^\circ \times 6 + 30^\circ \right)\]
\[ 570^\circ\text{ lies in the third quadrant in which the cosine function is negative .} \]
Also, 6 is an odd integer.
\[ \therefore \cos\left( 570^\circ \right) = \cos \left( 90^\circ \times 6 + 30^\circ \right) = - \cos \left( 30^\circ \right) = - \frac{\sqrt{3}}{2}\]
APPEARS IN
संबंधित प्रश्न
Find the values of the following trigonometric ratio:
Find the values of the following trigonometric ratio:
Find the values of the following trigonometric ratio:
Find the values of the following trigonometric ratio:
Find the values of the following trigonometric ratio:
Find the values of the following trigonometric ratio:
Find the values of the following trigonometric ratio:
Find the values of the following trigonometric ratio:
If for real values of x, cosθ = `x + 1/x`, then ______.