Advertisements
Advertisements
प्रश्न
tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to
विकल्प
(a) \[\frac{\sqrt{3}}{4}\]
(b) \[\frac{\sqrt{3}}{2}\]
(c) \[\sqrt{3}\]
(d) 1
उत्तर
(c) \[\sqrt{3}\]
\[\tan20° + \tan40° + \sqrt{3}\tan20°\tan40°\]
\[ = \tan 60°(1 - \tan20°\tan40°) + \tan60°\tan20°\tan40° \left[ \text{ Using } \tan60° = \frac{\tan20 + \tan40}{1 - \tan20\tan40} \text{ and } \tan60° = \sqrt{3} \right]\]
\[ = \tan60° - \tan60°\tan20°tan40° + \tan60°\tan20°\tan40°\]
\[ = \tan60° \]
\[ = \sqrt{3}\]
APPEARS IN
संबंधित प्रश्न
Find the value of: tan 15°
Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
Prove the following:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Prove the following:
`(sin x - siny)/(cos x + cos y)= tan (x -y)/2`
Prove the following:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
Prove the following:
cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
Prove that: `(cos x + cos y)^2 + (sin x - sin y )^2 = 4 cos^2 (x + y)/2`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]
If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.
If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).
If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.
Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies.
If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B.
If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\] then write the value of tan x tan y.
If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =
If cot (α + β) = 0, sin (α + 2β) is equal to
If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to
If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then
If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =
Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa
If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ
If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.
If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].
Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.
If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`
[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]
The value of sin(45° + θ) - cos(45° - θ) is ______.
The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.
If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.
If sinx + cosx = a, then sin6x + cos6x = ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
State whether the statement is True or False? Also give justification.
If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`
State whether the statement is True or False? Also give justification.
If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`