हिंदी

Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = 12. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.

योग

उत्तर

Given that: tan θ = –1 and cos θ = `1/sqrt(2)`

tanθ = –1

⇒ tan θ = `tan((-pi)/4)`

⇒ tan θ = `tan(2pi - pi/4)`

⇒ tan θ = `tan  (7pi)/4`

∴ θ = `(7pi)/4`

Now cos θ = `1/sqrt(2)`

⇒ cos θ = `cos  pi/4`

⇒ cos θ = `cos(2pi - pi/4)`

⇒ cos θ = `cos  (7pi)/4`

∴ θ = `(7pi)/4`  ........[tan θ and cos θ are positive in 4th quadrant]

Hence, the most general value of θ = `2"n"pi + (7pi)/4`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise [पृष्ठ ५३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Exercise | Q 16 | पृष्ठ ५३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that: `2 sin^2  (3pi)/4 + 2 cos^2  pi/4  + 2 sec^2  pi/3 = 10`


Find the value of: sin 75°


Prove the following:

`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`


Prove that: `(cos x  + cos y)^2 + (sin x - sin y )^2 =  4 cos^2  (x + y)/2`


Prove that: sin 3x + sin 2x – sin x = 4sin x `cos  x/2 cos  (3x)/2`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)


If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)


Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°


Evaluate the following:
 cos 80° cos 20° + sin 80° sin 20°


Prove that

\[\frac{\cos 11^\circ + \sin 11^\circ}{\cos 11^\circ - \sin 11^\circ} = \tan 56^\circ\]

Prove that:

\[\sin\left( \frac{4\pi}{9} + 7 \right)\cos\left( \frac{\pi}{9} + 7 \right) - \cos\left( \frac{4\pi}{9} + 7 \right)\sin\left( \frac{\pi}{9} + 7 \right) = \frac{\sqrt{3}}{2}\]

 


Prove that:

\[\sin\left( \frac{3\pi}{8} - 5 \right)\cos\left( \frac{\pi}{8} + 5 \right) + \cos\left( \frac{3\pi}{8} - 5 \right)\sin\left( \frac{\pi}{8} + 5 \right) = 1\]

 


If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].


Prove that:

\[\frac{\sin \left( A - B \right)}{\sin A \sin B} + \frac{\sin \left( B - C \right)}{\sin B \sin C} + \frac{\sin \left( C - A \right)}{\sin C \sin A} = 0\]

 


Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.

 

If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]


If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).

 

Find the maximum and minimum values of each of the following trigonometrical expression: 

\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]


If x cos θ = y cos \[\left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right)\]then write the value of \[\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\] 


If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 


If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =


If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =


If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is 

 

 


If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.


If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].


If f(x) = cos2x + sec2x, then ______.

[Hint: A.M ≥ G.M.]


If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.


Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.


The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×