Advertisements
Advertisements
प्रश्न
Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.
उत्तर
Given that: tan θ = –1 and cos θ = `1/sqrt(2)`
tanθ = –1
⇒ tan θ = `tan((-pi)/4)`
⇒ tan θ = `tan(2pi - pi/4)`
⇒ tan θ = `tan (7pi)/4`
∴ θ = `(7pi)/4`
Now cos θ = `1/sqrt(2)`
⇒ cos θ = `cos pi/4`
⇒ cos θ = `cos(2pi - pi/4)`
⇒ cos θ = `cos (7pi)/4`
∴ θ = `(7pi)/4` ........[tan θ and cos θ are positive in 4th quadrant]
Hence, the most general value of θ = `2"n"pi + (7pi)/4`.
APPEARS IN
संबंधित प्रश्न
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Find the value of: sin 75°
Prove the following:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
Prove that: `(cos x + cos y)^2 + (sin x - sin y )^2 = 4 cos^2 (x + y)/2`
Prove that: sin 3x + sin 2x – sin x = 4sin x `cos x/2 cos (3x)/2`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
Prove that
Prove that:
Prove that:
If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].
Prove that:
Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
Find the maximum and minimum values of each of the following trigonometrical expression:
\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]
If x cos θ = y cos \[\left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right)\]then write the value of \[\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\]
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =
If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =
If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is
If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.
If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.
The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.