हिंदी

If cotθ + tanθ = 2cosecθ, then find the general value of θ. - Mathematics

Advertisements
Advertisements

प्रश्न

If cotθ + tanθ = 2cosecθ, then find the general value of θ.

योग

उत्तर

Given that: cotθ + tanθ = 2cosecθ

⇒ `costheta/sintheta + sintheta/costheta = 2/sintheta`

⇒ `(cos^2theta + sin^2theta)/(sintheta cos theta) = 2/sintheta`

⇒ `1/(sintheta costheta) = 2/sintheta`

⇒ 2sinθ cosθ = sinθ

⇒ 2sinθ cosθ – sinθ = 0

⇒ sinθ(2cosθ – 1) = 0

⇒ sinθ ≠ 0 or 2cosθ – 1 = 0 or cosθ = `1/2`

⇒ cosθ = `cos  pi/3`

∴ θ = `2"n"pi +- pi/3`

Hence, the general value of θ is `2"n"pi +- pi/3`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise [पृष्ठ ५४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Exercise | Q 17 | पृष्ठ ५४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that: `sin^2  pi/6 + cos^2  pi/3 - tan^2  pi/4 = -1/2`


Prove the following:

`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`


Prove the following:

`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`


Prove the following:

`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`


Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x


Prove that: sin 3x + sin 2x – sin x = 4sin x `cos  x/2 cos  (3x)/2`


Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°


Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°


Prove that

\[\frac{\cos 8^\circ - \sin 8^\circ}{\cos 8^\circ + \sin 8^\circ} = \tan 37^\circ\]

Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]


Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]


Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]

 


Prove that:

\[\frac{\sin \left( A - B \right)}{\sin A \sin B} + \frac{\sin \left( B - C \right)}{\sin B \sin C} + \frac{\sin \left( C - A \right)}{\sin C \sin A} = 0\]

 


Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)


Prove that:
\[\frac{1}{\sin \left( x - a \right) \sin \left( x - b \right)} = \frac{\cot \left( x - a \right) - \cot \left( x - b \right)}{\sin \left( a - b \right)}\]


Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 


Find the maximum and minimum values of each of the following trigonometrical expression: 

\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]


Find the maximum and minimum values of each of the following trigonometrical expression:

sin x − cos x + 1


If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.


If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.  


If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 


If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =


If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is

 

If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to 


The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is


Match each item given under column C1 to its correct answer given under column C2.

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`

Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.


If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.


If sinx + cosx = a, then |sinx – cosx| = ______.


The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×