Advertisements
Advertisements
प्रश्न
If x cos θ = y cos \[\left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right)\]then write the value of \[\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\]
उत्तर
\[\text{ Given }: \]
\[x \cos\theta = y\left( \cos\theta\cos\frac{2\pi}{3} - \sin\theta \sin\frac{2\pi}{3} \right) = z\left( \cos\theta\cos\frac{4\pi}{3} - \sin\theta \sin\frac{4\pi}{3} \right)\]
\[ \Rightarrow x\cos\theta = y\left( - \frac{1}{2}\cos\theta - \frac{\sqrt{3}}{2}\sin\theta \right) = z\left( - \frac{1}{2}\cos\theta + \frac{\sqrt{3}}{2}\sin\theta \right) \]
\[ \Rightarrow x = \frac{y}{2}\left( - 1 - \sqrt{3}\tan\theta \right) = \frac{z}{2}\left( - 1 + \sqrt{3}\tan\theta \right)\]
\[x = \frac{y}{2}\left( - 1 - \sqrt{3}\tan\theta \right)\]
\[z = \frac{y\left( - 1 - \sqrt{3}\tan\theta \right)}{\left( - 1 + \sqrt{3}\tan\theta \right)}\]
\[\text{ Now }, \]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{2}{y\left( - 1 - \sqrt{3}\tan\theta \right)} + \frac{1}{y} + \frac{\left( - 1 + \sqrt{3}\tan\theta \right)}{y\left( - 1 - \sqrt{3}\tan\theta \right)}\]
\[ = \frac{2 + \left( - 1 - \sqrt{3}\tan\theta \right) + \left( - 1 + \sqrt{3}\tan\theta \right)}{y\left( - 1 - \sqrt{3}\tan\theta \right)}\]
\[ = 0\]
APPEARS IN
संबंधित प्रश्न
Prove that `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
Prove the following:
sin2 6x – sin2 4x = sin 2x sin 10x
Prove the following:
cos2 2x – cos2 6x = sin 4x sin 8x
Prove the following:
sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x
Prove the following:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Prove the following:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Prove the following:
cos 4x = 1 – 8sin2 x cos2 x
Prove that: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2 (x - y)/2`
Prove that: sin 3x + sin 2x – sin x = 4sin x `cos x/2 cos (3x)/2`
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)
Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°
Prove that:
Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
Prove that:
Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]
If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.
If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].
If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).
Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies.
If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B.
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =
If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to
If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa
If cotθ + tanθ = 2cosecθ, then find the general value of θ.
The value of sin(45° + θ) - cos(45° - θ) is ______.
If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.
The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.