Advertisements
Advertisements
Question
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)
Solution
Given:
\[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\]
A lies in thesecond quadrant and B lies in the third quadrant .
We know that sine function is positive in thesecond quadrant and in thethird quadrant, both sine and \cosine functions are negative.
Therefore,
\[\sin A = \sqrt{1 - \cos^2 A} = \sqrt{1 - \left( \frac{- 12}{13} \right)^2} = \sqrt{1 - \frac{144}{169}} = \sqrt{\frac{25}{169}} = \frac{5}{13}\]
\[\sin B = - \frac{1}{\sqrt{1 + \cot^2 B}} = - \frac{1}{\sqrt{1 + \left( \frac{24}{7} \right)^2}} = \frac{- 1}{\sqrt{1 + \frac{576}{49}}} = \frac{- 1}{\sqrt{\frac{625}{49}}} = \frac{- 7}{25}\]
\[\cos B = - \sqrt{1 - \sin^2 B} = - \sqrt{1 - \left( \frac{- 7}{25} \right)^2} = - \sqrt{1 - \frac{49}{625}} = - \sqrt{\frac{576}{625}} = - \frac{24}{25}\]
Now,
\[\sin\left( A + B \right) = \sin A \cos B + \cos A + \sin B \]
\[ = \frac{5}{13} \times \frac{- 24}{25} + \frac{- 12}{13} \times \frac{- 7}{25}\]
\[ = \frac{- 120}{325} + \frac{84}{325}\]
\[ = \frac{- 36}{325}\]
APPEARS IN
RELATED QUESTIONS
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Find the value of: sin 75°
Find the value of: tan 15°
Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
Prove the following:
`(sin x - siny)/(cos x + cos y)= tan (x -y)/2`
Prove the following:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
Prove that: sin 3x + sin 2x – sin x = 4sin x `cos x/2 cos (3x)/2`
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
Prove that
If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].
Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)
Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x
Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
If sin α + sin β = a and cos α + cos β = b, show that
Prove that:
\[\frac{1}{\sin \left( x - a \right) \sin \left( x - b \right)} = \frac{\cot \left( x - a \right) - \cot \left( x - b \right)}{\sin \left( a - b \right)}\]
Find the maximum and minimum values of each of the following trigonometrical expression:
12 sin x − 5 cos x
Reduce each of the following expressions to the sine and cosine of a single expression:
24 cos x + 7 sin x
Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\] lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]
If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B.
If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\] then write the value of tan x tan y.
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =
If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to
The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is
If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to
If sinθ + cosθ = 1, then find the general value of θ.
If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2
[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]
If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`
[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]
Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2
[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]
If tan θ = 3 and θ lies in third quadrant, then the value of sin θ ______.
The value of tan3A - tan2A - tanA is equal to ______.
If sinx + cosx = a, then sin6x + cos6x = ______.
The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.