Advertisements
Advertisements
Question
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
Solution
Given:
6 cosx + 8 sinx = 9
⇒ 6 cosx = 9 - 8 sinx
⇒ 36 cos2x = (9 - 8 sinx)2
⇒ 36(1 - sin2x) = 81 + 64 sin2x - 144 sinx
⇒100 sin2x - 144 sinx + 45 = 0
Now, α and β are the roots of the given equation; therefore, cos α and cos β are the roots of the above equation.
`=> sinalpha sinbeta = 45/100` `("Product of roots of a quadratic equation" ax^2+bx+c=0 "is" c/a.)`
Again, 6 cosx + 8 sinx = 9
⇒ 8 sinx = 9 - 6 cosx
⇒ 64 sin2x = (9 - 6 cosx)2
⇒ 64(1 - cos2x) = 81 + 36cos2x - 108 cosx
⇒ 100 cos2x - 108 cosx + 17 = 0
Now, α and β are the roots of the given equation; therefore, sin α and sin β are the roots of the above equation.
Therefore, cos α cos β = `17/100`
Hence, cos(α + β) = cos α cos β - sin α sin β
`=17/100-45/100`
`=-28/100`
`=-7/25`
\[\sin \left( \alpha + \beta \right) = \sqrt{1 - \cos^2 \left( \alpha + \beta \right)}\]
\[ = \sqrt{1 - \left( \frac{- 7}{25} \right)^2}\]
\[ = \sqrt{\frac{576}{625}}\]
\[ = \frac{24}{25}\]
APPEARS IN
RELATED QUESTIONS
Prove that: `sin^2 pi/6 + cos^2 pi/3 - tan^2 pi/4 = -1/2`
Find the value of: sin 75°
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)
If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).
If \[\tan A = \frac{3}{4}, \cos B = \frac{9}{41}\], where π < A < \[\frac{3\pi}{2}\] and 0 < B <\[\frac{\pi}{2}\], find tan (A + B).
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)
Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]
Prove that
Prove that:
Prove that:
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]
If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]
If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].
If angle \[\theta\] is divided into two parts such that the tangents of one part is \[\lambda\] times the tangent of other, and \[\phi\] is their difference, then show that\[\sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]
If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].
Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\] lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]
Write the maximum and minimum values of 3 cos x + 4 sin x + 5.
If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B.
If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
If cot (α + β) = 0, sin (α + 2β) is equal to
If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then
If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =
If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to
Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x
If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2
[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]
If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`
[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]
Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2
[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]
The value of tan 75° - cot 75° is equal to ______.
If tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.
If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.
If sinx + cosx = a, then |sinx – cosx| = ______.
State whether the statement is True or False? Also give justification.
If tanA = `(1 - cos B)/sinB`, then tan2A = tanB
In the following match each item given under the column C1 to its correct answer given under the column C2:
Column A | Column B |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos (x + y) cos (x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |