English

If tanα = 17, tanβ = 13, then cos2α is equal to ______. - Mathematics

Advertisements
Advertisements

Question

If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.

Options

  • sin2β

  • sin4β

  • sin3β

  • cos2β

MCQ
Fill in the Blanks

Solution

If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to sin4β.

Explanation:

Given that: tanα = `1/7`, tanβ = `1/3`

cos2α = `(1 - tan^2 alpha)/(1 + tan^2 alpha)`

= `(1 - (1/7)^2)/(1 + (1/7)^2)`

= `(1 - 1/49)/(1 + 1/49)`

= `48/50`

= `24/25`

Now tan2β = `(2tan beta)/(1 - tan^2 beta)`

= `(2 xx 1/3)/(1 - 1/9)`

= `(2/3)/(8/9)`

= `2/3 xx 9/8`

= `3/4`

∴ tan2β = `3/4`

sin4β = `(2tan 2beta)/(1 + tan^2 2beta)`

= `(2 xx 3/4)/(1 + (3/4)^2`

= `(3/2)/(1 + 9/16)`

= `3/2 xx 16/25`

= `24/25`

cos2α = sin4β = `24/25`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise [Page 59]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise | Q 57 | Page 59

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following:

`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`


Prove the following:

`(sin x - sin 3x)/(sin^2 x - cos^2 x) =  2sin x`


If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).


Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)


If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].


Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.


Prove that:

\[\frac{\sin \left( A - B \right)}{\sin A \sin B} + \frac{\sin \left( B - C \right)}{\sin B \sin C} + \frac{\sin \left( C - A \right)}{\sin C \sin A} = 0\]

 


Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x


Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]


If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.

 

If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].


If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).


If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).

 

Prove that:
\[\frac{1}{\sin \left( x - a \right) \sin \left( x - b \right)} = \frac{\cot \left( x - a \right) - \cot \left( x - b \right)}{\sin \left( a - b \right)}\]


If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).

 

Reduce each of the following expressions to the sine and cosine of a single expression: 

24 cos x + 7 sin 


If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.


If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\]  then write the value of tan x tan y


The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\] 


If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\] 


If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =


tan 3A − tan 2A − tan A =


If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =


Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x


Match each item given under column C1 to its correct answer given under column C2.

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`

If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2

[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]


If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.


State whether the statement is True or False? Also give justification.

If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×