मराठी

If tanα = 17, tanβ = 13, then cos2α is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.

पर्याय

  • sin2β

  • sin4β

  • sin3β

  • cos2β

MCQ
रिकाम्या जागा भरा

उत्तर

If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to sin4β.

Explanation:

Given that: tanα = `1/7`, tanβ = `1/3`

cos2α = `(1 - tan^2 alpha)/(1 + tan^2 alpha)`

= `(1 - (1/7)^2)/(1 + (1/7)^2)`

= `(1 - 1/49)/(1 + 1/49)`

= `48/50`

= `24/25`

Now tan2β = `(2tan beta)/(1 - tan^2 beta)`

= `(2 xx 1/3)/(1 - 1/9)`

= `(2/3)/(8/9)`

= `2/3 xx 9/8`

= `3/4`

∴ tan2β = `3/4`

sin4β = `(2tan 2beta)/(1 + tan^2 2beta)`

= `(2 xx 3/4)/(1 + (3/4)^2`

= `(3/2)/(1 + 9/16)`

= `3/2 xx 16/25`

= `24/25`

cos2α = sin4β = `24/25`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Exercise [पृष्ठ ५९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 3 Trigonometric Functions
Exercise | Q 57 | पृष्ठ ५९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


Prove the following:

`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`


Prove the following:

cos2 2x – cos2 6x = sin 4x sin 8x


Prove the following:

`(sin x -  siny)/(cos x + cos y)= tan  (x -y)/2`


Prove the following:

`(sin x - sin 3x)/(sin^2 x - cos^2 x) =  2sin x`


Prove the following:

`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)


Prove that:
\[\frac{7\pi}{12} + \cos\frac{\pi}{12} = \sin\frac{5\pi}{12} - \sin\frac{\pi}{12}\]


 If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].


If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].


Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]


Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]

 


Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]


If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]


If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).

 

Reduce each of the following expressions to the sine and cosine of a single expression: 

cos x − sin 


Write the maximum and minimum values of 3 cos x + 4 sin x + 5. 


Write the maximum value of 12 sin x − 9 sin2 x


If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to


If cot (α + β) = 0, sin (α + 2β) is equal to


The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is

 

If sin (π cos x) = cos (π sin x), then sin 2x = ______.


If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is 

 

 


If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is

 

If cotθ + tanθ = 2cosecθ, then find the general value of θ.


If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`

[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]


If tanα = `m/(m +  1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.


The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.


Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×