Advertisements
Advertisements
प्रश्न
If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.
पर्याय
sin2β
sin4β
sin3β
cos2β
उत्तर
If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to sin4β.
Explanation:
Given that: tanα = `1/7`, tanβ = `1/3`
cos2α = `(1 - tan^2 alpha)/(1 + tan^2 alpha)`
= `(1 - (1/7)^2)/(1 + (1/7)^2)`
= `(1 - 1/49)/(1 + 1/49)`
= `48/50`
= `24/25`
Now tan2β = `(2tan beta)/(1 - tan^2 beta)`
= `(2 xx 1/3)/(1 - 1/9)`
= `(2/3)/(8/9)`
= `2/3 xx 9/8`
= `3/4`
∴ tan2β = `3/4`
sin4β = `(2tan 2beta)/(1 + tan^2 2beta)`
= `(2 xx 3/4)/(1 + (3/4)^2`
= `(3/2)/(1 + 9/16)`
= `3/2 xx 16/25`
= `24/25`
cos2α = sin4β = `24/25`
APPEARS IN
संबंधित प्रश्न
Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
Prove the following:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`
Prove the following:
cos2 2x – cos2 6x = sin 4x sin 8x
Prove the following:
`(sin x - siny)/(cos x + cos y)= tan (x -y)/2`
Prove the following:
`(sin x - sin 3x)/(sin^2 x - cos^2 x) = 2sin x`
Prove the following:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)
Prove that:
\[\frac{7\pi}{12} + \cos\frac{\pi}{12} = \sin\frac{5\pi}{12} - \sin\frac{\pi}{12}\]
If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].
If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].
Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]
Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]
Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]
If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
Reduce each of the following expressions to the sine and cosine of a single expression:
cos x − sin x
Write the maximum and minimum values of 3 cos x + 4 sin x + 5.
Write the maximum value of 12 sin x − 9 sin2 x.
If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
If cot (α + β) = 0, sin (α + 2β) is equal to
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is
If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is
If cotθ + tanθ = 2cosecθ, then find the general value of θ.
If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`
[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]
If tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.
The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.