मराठी

If tanα = mm+ 1, tanβ = 12m+1, then α + β is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If tanα = `m/(m +  1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.

पर्याय

  • `pi/2`

  • `pi/3`

  • `pi/6`

  • `pi/4`

MCQ
रिकाम्या जागा भरा

उत्तर

If tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`, then α + β is equal to `bbunderline(pi/4)`.

Explanation:

Given that tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`

tan(α + β) = `(tanalpha + tanbeta)/(1 - tanalpha tanbeta)`

= `(m/(m + 1) + 1/(2m + 1))/(1 - m/(m + 1) xx 1/(2m + 1))`

= `((2m^2 + m + m + 1)/((m + 1)(2m + 1)))/(((m + 1)(2m + 1) - m)/((m + 1)(2m + 1))`

= `(2m^2 + 2m + 1)/(2m^2 + 2m + m + 1 - m)`

= `(2m^2 + 2m + 1)/(2m^2 + 2m + 1)` 

= 1

⇒ tan(α + β) = `tan  pi/4`

∴ α + β = `pi/4`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Exercise [पृष्ठ ५६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 3 Trigonometric Functions
Exercise | Q 40 | पृष्ठ ५६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


Prove the following:

sin2 6x – sin2 4x = sin 2x sin 10x


Prove the following:

sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x


Prove the following:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


Prove the following:

cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1


Prove that: `(cos x  + cos y)^2 + (sin x - sin y )^2 =  4 cos^2  (x + y)/2`


Prove that: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2  (x - y)/2`


Evaluate the following:
 cos 80° cos 20° + sin 80° sin 20°


Prove that:
\[\frac{7\pi}{12} + \cos\frac{\pi}{12} = \sin\frac{5\pi}{12} - \sin\frac{\pi}{12}\]


Prove that

\[\frac{\cos 8^\circ - \sin 8^\circ}{\cos 8^\circ + \sin 8^\circ} = \tan 37^\circ\]

Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].


Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.


If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).


If sin α + sin β = a and cos α + cos β = b, show that

\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]

 


If sin α + sin β = a and cos α + cos β = b, show that

\[\cos \left( \alpha + \beta \right) = \frac{b^2 - a^2}{b^2 + a^2}\]

Prove that:

\[\frac{1}{\sin \left( x - a \right) \cos \left( x - b \right)} = \frac{\cot \left( x - a \right) + \tan \left( x - b \right)}{\cos \left( a - b \right)}\]

 


If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].


If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.


Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies. 


If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B


If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =


Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x


If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.


If sinθ + cosθ = 1, then find the general value of θ.


If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.


The value of tan 75° - cot 75° is equal to ______.


The value of sin(45° + θ) - cos(45° - θ) is ______.


State whether the statement is True or False? Also give justification.

If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×