मराठी

If 12 Sin X − 9sin2 X Attains Its Maximum Value at X = α, Then Write the Value of Sin α. - Mathematics

Advertisements
Advertisements

प्रश्न

If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.

टीपा लिहा

उत्तर

\[\text{ Let } f\left( x \right) = 12\sin x - 9 \sin^2 x \]

\[ = - \left( 9 \sin^2 x - 12 \sin x \right) \]

\[ = - \left[ \left( 3\sin x \right)^2 - 2 . 3 \sin x . 2 + 2^2 - 4 \right]\]

\[ = - \left[ \left( 3 \sin x - 2 \right)^2 - 4 \right]\]

\[ = 4 - \left( 3 \sin x - 2 \right)^2 \]

\[\text{ Minimum value of } \left( 3 \sin x - 2 \right)^2 \text{ is } 0 . \]

\[\text{ Therefore, maximum value of f }\left( x \right) = 4 - \left( 3 \sin x - 2 \right)^2 \text{ is } 4 . \]

\[\text{ We are given that } 12\sin x - 9 \sin^2 x \text{ will attain its maximum value at } x = \alpha . \]

\[ \therefore 12\sin\alpha - 9 \sin^2 \alpha = 4\]

\[ \Rightarrow - 9 \sin^2 \alpha + 12\sin\alpha - 4 = 0\]

\[ \Rightarrow 9 \sin^2 \alpha - 12 \sin\alpha + 4 = 0\]

\[ \Rightarrow 9 \sin^2 \alpha - 6\sin\alpha - 6\sin\alpha + 4 = 0\]

\[ \Rightarrow 3\sin\alpha\left( 3\sin\alpha - 2 \right) - 2\left( 3\sin\alpha - 2 \right) = 0\]

\[ \Rightarrow \left( 3\sin\alpha - 2 \right)\left( 3\sin\alpha - 2 \right) = 0\]

\[ \therefore \sin\alpha = \frac{2}{3}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.3 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.3 | Q 5 | पृष्ठ २६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that: `2 sin^2  (3pi)/4 + 2 cos^2  pi/4  + 2 sec^2  pi/3 = 10`


Find the value of: sin 75°


Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


Prove the following:

`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`


Prove the following:

`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`


Prove that: `(cos x  + cos y)^2 + (sin x - sin y )^2 =  4 cos^2  (x + y)/2`


Prove that: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2  (x - y)/2`


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)


Prove that

\[\frac{\cos 11^\circ + \sin 11^\circ}{\cos 11^\circ - \sin 11^\circ} = \tan 56^\circ\]

Prove that

\[\frac{\cos 8^\circ - \sin 8^\circ}{\cos 8^\circ + \sin 8^\circ} = \tan 37^\circ\]

Prove that:

\[\sin\left( \frac{\pi}{3} - x \right)\cos\left( \frac{\pi}{6} + x \right) + \cos\left( \frac{\pi}{3} - x \right)\sin\left( \frac{\pi}{6} + x \right) = 1\]

 


Prove that:

\[\sin\left( \frac{4\pi}{9} + 7 \right)\cos\left( \frac{\pi}{9} + 7 \right) - \cos\left( \frac{4\pi}{9} + 7 \right)\sin\left( \frac{\pi}{9} + 7 \right) = \frac{\sqrt{3}}{2}\]

 


 If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].


Prove that:

\[\frac{\sin \left( A - B \right)}{\sin A \sin B} + \frac{\sin \left( B - C \right)}{\sin B \sin C} + \frac{\sin \left( C - A \right)}{\sin C \sin A} = 0\]

 


If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].


If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].


If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).


Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\]  lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]


If x cos θ = y cos \[\left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right)\]then write the value of \[\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\] 


Write the maximum value of 12 sin x − 9 sin2 x


tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to 


If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =


If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to

 

If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is

 


If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is

 

The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is


If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ


Match each item given under column C1 to its correct answer given under column C2.

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`

If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2

[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]


If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.


The value of tan 75° - cot 75° is equal to ______.


The value of tan3A - tan2A - tanA is equal to ______.


The value of sin(45° + θ) - cos(45° - θ) is ______.


Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×