Advertisements
Advertisements
प्रश्न
If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to
पर्याय
tan A tan B tan C
0
1
None of these
उत्तर
1
π = 180°
Using tan(180 – A) = -tan A, we get:
\[C = \pi - (A + B)\]
Now,
\[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\]
\[ = \frac{\tan A + \tan B + \tan\left[ \pi - (A + B) \right]}{\tan A \tan B \tan\left[ \pi - (A + B) \right]}\]
\[ = \frac{\tan A + \tan B - \tan(A + B)}{- \tan A \tan B tan(A + B)}\]
\[ = \frac{\tan A + \tan B - \frac{\tan A + \tan B}{1 - \tan A \tan B}}{- \tan A \tan B \times \frac{\tan A + \tan B}{1 - \tan A \tan B}}\]
\[ = \frac{- \tan^2 A\tan B - tanA \tan^2 B}{- \tan^2 A \tan B - \tan A \tan^2 B}\]
\[ = 1\]
APPEARS IN
संबंधित प्रश्न
Prove that: `sin^2 pi/6 + cos^2 pi/3 - tan^2 pi/4 = -1/2`
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Prove the following:
sin2 6x – sin2 4x = sin 2x sin 10x
Prove the following:
sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x
Prove the following:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Prove that: `(cos x + cos y)^2 + (sin x - sin y )^2 = 4 cos^2 (x + y)/2`
Prove that: sin 3x + sin 2x – sin x = 4sin x `cos x/2 cos (3x)/2`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A − B)
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
Prove that:
If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].
If sin α + sin β = a and cos α + cos β = b, show that
Prove that:
If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].
Find the maximum and minimum values of each of the following trigonometrical expression:
sin x − cos x + 1
If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ.
Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies.
tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to
If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\]
tan 3A − tan 2A − tan A =
If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is
The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is
The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is
If cotθ + tanθ = 2cosecθ, then find the general value of θ.
If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.
If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.
If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.
If sinx + cosx = a, then sin6x + cos6x = ______.
If sinx + cosx = a, then |sinx – cosx| = ______.
State whether the statement is True or False? Also give justification.
If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`
State whether the statement is True or False? Also give justification.
If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.