Advertisements
Advertisements
प्रश्न
State whether the statement is True or False? Also give justification.
If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`
पर्याय
True
False
उत्तर
This statement is True.
Explanation:
Given that: cosecx = 1 + cotx
⇒ `1/sinx = 1 + cosx/sinx`
⇒ `1/sinx = 1 + (sinx + cosx)/sinx`
⇒ sinx + cosx = 1
⇒ `1/sqrt(2) sinx + 1/sqrt(2) cosx = 1/sqrt(2)`
⇒ `sin pi/4 sinx + cos pi/4 cos x = 1/sqrt(2)`
⇒ `cos(x - pi/4) = 1/sqrt(2)`
⇒ `cos(x - pi/4) = cos pi/4`
x = `2"n"pi + pi/4 + pi/4`
⇒ x = `2"n"pi + pi/2`
or x = `2"n"pi + pi/4 - pi/4`
⇒ x = 2nπ.
APPEARS IN
संबंधित प्रश्न
Prove that: `sin^2 pi/6 + cos^2 pi/3 - tan^2 pi/4 = -1/2`
Prove that `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
Prove the following:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
Prove the following:
`(sin x - siny)/(cos x + cos y)= tan (x -y)/2`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)
If \[\tan A = \frac{3}{4}, \cos B = \frac{9}{41}\], where π < A < \[\frac{3\pi}{2}\] and 0 < B <\[\frac{\pi}{2}\], find tan (A + B).
Prove that
Prove that
If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)
Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]
Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
If sin α + sin β = a and cos α + cos β = b, show that
If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.
If A + B = C, then write the value of tan A tan B tan C.
If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =
The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is
If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to
Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x
Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α
Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.
If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.
If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.
If sinx + cosx = a, then sin6x + cos6x = ______.