मराठी

State whether the statement is True or False? Also give justification. If cosecx = 1 + cotx then x = 2nπ, 2nπ + π2 - Mathematics

Advertisements
Advertisements

प्रश्न

State whether the statement is True or False? Also give justification.

If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर

This statement is True.

Explanation:

Given that: cosecx = 1 + cotx 

⇒ `1/sinx = 1 + cosx/sinx`

⇒ `1/sinx = 1 + (sinx + cosx)/sinx`

⇒ sinx + cosx = 1

⇒ `1/sqrt(2) sinx + 1/sqrt(2) cosx = 1/sqrt(2)`

⇒ `sin  pi/4 sinx + cos  pi/4 cos x = 1/sqrt(2)`

⇒ `cos(x - pi/4) = 1/sqrt(2)`

⇒ `cos(x - pi/4) = cos  pi/4`

x = `2"n"pi + pi/4 + pi/4`

⇒ x = `2"n"pi + pi/2`

or x = `2"n"pi + pi/4 - pi/4`

⇒ x = 2nπ.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Exercise [पृष्ठ ६०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 3 Trigonometric Functions
Exercise | Q 73 | पृष्ठ ६०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that: `sin^2  pi/6 + cos^2  pi/3 - tan^2  pi/4 = -1/2`


Prove that  `2 sin^2  pi/6 + cosec^2  (7pi)/6 cos^2  pi/3 = 3/2`


Prove the following:

`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`


Prove the following:

`(sin x -  siny)/(cos x + cos y)= tan  (x -y)/2`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)


If \[\tan A = \frac{3}{4}, \cos B = \frac{9}{41}\], where π < A < \[\frac{3\pi}{2}\] and 0 < B <\[\frac{\pi}{2}\], find tan (A + B).

 


Prove that

\[\frac{\cos 11^\circ + \sin 11^\circ}{\cos 11^\circ - \sin 11^\circ} = \tan 56^\circ\]

Prove that

\[\frac{\cos 9^\circ + \sin 9^\circ}{\cos 9^\circ - \sin 9^\circ} = \tan 54^\circ\]

 If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].


Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)


Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)


Prove that:
\[\frac{\tan \left( A + B \right)}{\cot \left( A - B \right)} = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}\]


Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x


If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).

 

If sin α + sin β = a and cos α + cos β = b, show that

\[\cos \left( \alpha + \beta \right) = \frac{b^2 - a^2}{b^2 + a^2}\]

If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.  


If A + B = C, then write the value of tan A tan B tan C.


If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =


The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is


If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to


Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x


Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α


Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.


If f(x) = cos2x + sec2x, then ______.

[Hint: A.M ≥ G.M.]


If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.


If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.


If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.


If sinx + cosx = a, then sin6x + cos6x = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×