मराठी

Prove that Cos 9 ∘ + Sin 9 ∘ Cos 9 ∘ − Sin 9 ∘ = Tan 54 ∘ - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that

\[\frac{\cos 9^\circ + \sin 9^\circ}{\cos 9^\circ - \sin 9^\circ} = \tan 54^\circ\]
थोडक्यात उत्तर

उत्तर

\[\text{ LHS }= \frac{\cos9^\circ + \sin9^\circ}{\cos9^\circ - \sin9^\circ}\]
\[ = \frac{\frac{\cos9^\circ}{\cos9^\circ} + \frac{\sin9^\circ}{\cos9^\circ}}{\frac{\cos9^\circ}{\cos9^\circ} - \frac{\sin9^\circ}{\cos9^\circ}} \left(\text{ Dividing the numerator and denominator by }\cos9 \right)\]
\[ = \frac{1 + \tan9^\circ}{1 - \tan9^\circ}\]
\[ = \frac{1 + \tan9^\circ}{1 + 1 \times \tan9^\circ}\]
\[ = \frac{\tan45^\circ + \tan9^\circ}{1 - \tan45^\circ \times \tan9^\circ} \left(\text{ As }\tan45^\circ = 1 \right)\]
\[ = \tan\left( 45^\circ + 9^\circ \right) \left[\text{ As }\frac{\tan A + \tan B}{1 - \tan A \tan B} = \tan\left( A + B \right) \right]\]
\[ = \tan54^\circ\]
 = RHS
Hence proved .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 11.2 | पृष्ठ १९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that  `2 sin^2  pi/6 + cosec^2  (7pi)/6 cos^2  pi/3 = 3/2`


Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


Prove the following:

`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`


Prove the following:

`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`


Prove the following:

cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x) 


Prove the following:

`(sin x -  siny)/(cos x + cos y)= tan  (x -y)/2`


Prove the following:

`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)


If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)


Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°


Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]


 If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].


Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]


Prove that:

\[\frac{\sin \left( A - B \right)}{\sin A \sin B} + \frac{\sin \left( B - C \right)}{\sin B \sin C} + \frac{\sin \left( C - A \right)}{\sin C \sin A} = 0\]

 


Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)


Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1


Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.

 

If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].


If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.


Find the maximum and minimum values of each of the following trigonometrical expression: 

12 cos x + 5 sin x + 4 


Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\]  lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]


Write the maximum value of 12 sin x − 9 sin2 x


The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\] 


If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =


tan 3A − tan 2A − tan A =


If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to 


The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is


Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x


If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.


If tanα = `m/(m +  1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.


The value of sin(45° + θ) - cos(45° - θ) is ______.


Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.


State whether the statement is True or False? Also give justification.

If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`


State whether the statement is True or False? Also give justification.

If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×