मराठी

Prove the following: sinx- sinycosx+cosy=tan x-y2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following:

`(sin x -  siny)/(cos x + cos y)= tan  (x -y)/2`

बेरीज

उत्तर

We have, बायाँ पक्ष = `(sin x -  siny)/(cos x + cos y)`

= `(2sin ((x - y )/2) cos ((x + y)/2))/(2cos ((x - y)/2) cos ((x + y)/2)`

= `(sin (x -y)/2)/(cos (x - y)/2)` 

= tan `(x - y)/2` = दायाँ पक्ष।

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Exercise 3.3 [पृष्ठ ७३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 3 Trigonometric Functions
Exercise 3.3 | Q 18 | पृष्ठ ७३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that  `cot^2  pi/6 + cosec  (5pi)/6 + 3 tan^2  pi/6 = 6`


Prove the following:

sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x


Prove the following:

cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x) 


Prove the following:

`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`


Prove the following:

cos 4x = 1 – 8sinx cosx


Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°


Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°


Prove that:
\[\frac{7\pi}{12} + \cos\frac{\pi}{12} = \sin\frac{5\pi}{12} - \sin\frac{\pi}{12}\]


Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]


Prove that

\[\frac{\cos 8^\circ - \sin 8^\circ}{\cos 8^\circ + \sin 8^\circ} = \tan 37^\circ\]

Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.


Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]


Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1


Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.

 

If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.

 

If sin α + sin β = a and cos α + cos β = b, show that

\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]

 


If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).

 

Find the maximum and minimum values of each of the following trigonometrical expression: 

12 cos x + 5 sin x + 4 


Find the maximum and minimum values of each of the following trigonometrical expression: 

\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]


Reduce each of the following expressions to the sine and cosine of a single expression: 

\[\sqrt{3} \sin x - \cos x\] 


Write the maximum value of 12 sin x − 9 sin2 x


If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\] 


If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =


The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is

 

If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to 


If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to


If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.


If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.

[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]


Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.


If f(x) = cos2x + sec2x, then ______.

[Hint: A.M ≥ G.M.]


If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.


If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.


3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.


Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×