मराठी

If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.

रिकाम्या जागा भरा

उत्तर

If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = `pi/4`.

Explanation:

Given that 3 tan (θ – 15°) = tan (θ + 15°)

Which can be rewritten as `(tan(theta + 15^circ))/(tan(theta - 15^circ)) = 3/1`

Applying componendo and Dividendo

We get `(tan(theta + 15^circ) + tan(theta - 15^circ))/(tan(theta + 15^circ) - tan(theta - 15^circ))` = 2

⇒ `(sin(theta + 15^circ) cos(theta - 15^circ) + sin(theta - 15^circ) cos(theta + 15^circ))/(sin(theta + 15^circ) cos(theta - 15^circ) - sin(theta - 15^circ) cos(theta + 15^circ))` = 2

⇒ `(sin 2theta)/(sin30^circ)` = 2

i.e., sin 2θ = 1

Giving θ = `pi/4`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Solved Examples [पृष्ठ ५०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 3 Trigonometric Functions
Solved Examples | Q 20 | पृष्ठ ५०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove the following:

`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`


Prove the following:

cos 4x = 1 – 8sinx cosx


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)


Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1


Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x


If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]


If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.

 

If sin α + sin β = a and cos α + cos β = b, show that

\[\cos \left( \alpha + \beta \right) = \frac{b^2 - a^2}{b^2 + a^2}\]

Prove that:

\[\frac{1}{\sin \left( x - a \right) \cos \left( x - b \right)} = \frac{\cot \left( x - a \right) + \tan \left( x - b \right)}{\cos \left( a - b \right)}\]

 


If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.


If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].


Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 


Find the maximum and minimum values of each of the following trigonometrical expression: 

\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]


Show that sin 100° − sin 10° is positive. 


If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.


If A + B = C, then write the value of tan A tan B tan C.


If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 


\[\frac{\cos 10^\circ + \sin 10^\circ}{\cos 10^\circ - \sin 10^\circ} =\]

 


If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]


Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.


If cotθ + tanθ = 2cosecθ, then find the general value of θ.


The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.


If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.


If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.


If sinx + cosx = a, then |sinx – cosx| = ______.


3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.


The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×