Advertisements
Advertisements
प्रश्न
If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.
उत्तर
If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = `pi/4`.
Explanation:
Given that 3 tan (θ – 15°) = tan (θ + 15°)
Which can be rewritten as `(tan(theta + 15^circ))/(tan(theta - 15^circ)) = 3/1`
Applying componendo and Dividendo
We get `(tan(theta + 15^circ) + tan(theta - 15^circ))/(tan(theta + 15^circ) - tan(theta - 15^circ))` = 2
⇒ `(sin(theta + 15^circ) cos(theta - 15^circ) + sin(theta - 15^circ) cos(theta + 15^circ))/(sin(theta + 15^circ) cos(theta - 15^circ) - sin(theta - 15^circ) cos(theta + 15^circ))` = 2
⇒ `(sin 2theta)/(sin30^circ)` = 2
i.e., sin 2θ = 1
Giving θ = `pi/4`
APPEARS IN
संबंधित प्रश्न
Prove the following:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`
Prove the following:
cos 4x = 1 – 8sin2 x cos2 x
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x
If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]
If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.
If sin α + sin β = a and cos α + cos β = b, show that
Prove that:
If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.
If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].
Find the maximum and minimum values of each of the following trigonometrical expression:
12 sin x − 5 cos x
Find the maximum and minimum values of each of the following trigonometrical expression:
\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]
Show that sin 100° − sin 10° is positive.
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
If A + B = C, then write the value of tan A tan B tan C.
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]
Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.
If cotθ + tanθ = 2cosecθ, then find the general value of θ.
The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.
If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.
If sinx + cosx = a, then |sinx – cosx| = ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.