Advertisements
Advertisements
प्रश्न
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
उत्तर
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = 13.
Explanation:
Given expression is 3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x)
= 3[sin2x + cos2x – 2 sinx cosx]2 + 6(sin2x + cos2x + 2sinx cosx) + 4[(sin2x)3 + (cos2x)3]
= 3[1 – 2sinx cosx]2 + 6(1 + 2sinx cosx) + 4[(sin2x + cos2x)3 – 3sin2x cos2x (sin2x + cos2x)]
= 3[1 + 4sin2x cos2x – 4sinx cosx] + 6(1 + 2 sinx cosx) + 4[1 – 3sin2x cos2x]
= 3 + 12sin2x cos2x – 12sinx cosx + 6 + 12sinx cosx + 4 – 12sin2x cos2x
= 3 + 6 + 4
= 13
APPEARS IN
संबंधित प्रश्न
Find the value of: sin 75°
Prove the following:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`
Prove the following:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x
Prove the following:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Prove that: `(cos x + cos y)^2 + (sin x - sin y )^2 = 4 cos^2 (x + y)/2`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A − B)
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)
If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).
If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).
Prove that
Prove that:
Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x
If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]
If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.
If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.
If angle \[\theta\] is divided into two parts such that the tangents of one part is \[\lambda\] times the tangent of other, and \[\phi\] is their difference, then show that\[\sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]
If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].
If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).
Find the maximum and minimum values of each of the following trigonometrical expression:
sin x − cos x + 1
Show that sin 100° − sin 10° is positive.
Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies.
If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.
If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to
If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.
[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]
Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2
[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]
The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.