English

3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______. - Mathematics

Advertisements
Advertisements

Question

3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.

Fill in the Blanks

Solution

3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = 13.

Explanation:

Given expression is 3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) 

= 3[sin2x + cos2x – 2 sinx cosx]2 + 6(sin2x + cos2x + 2sinx cosx) + 4[(sin2x)3 + (cos2x)3]

= 3[1 – 2sinx cosx]2 + 6(1 + 2sinx cosx) + 4[(sin2x + cos2x)3 – 3sin2x cos2x (sin2x + cos2x)]

= 3[1 + 4sin2x cos2x – 4sinx cosx] + 6(1 + 2 sinx cosx) + 4[1 – 3sin2x cos2x]

= 3 + 12sin2x cos2x – 12sinx cosx + 6 + 12sinx cosx + 4 – 12sin2x cos2x

= 3 + 6 + 4

= 13

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise [Page 59]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise | Q 65 | Page 59

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following:

`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`


Prove that: `(cos x  + cos y)^2 + (sin x - sin y )^2 =  4 cos^2  (x + y)/2`


If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)


Prove that:

\[\sin\left( \frac{4\pi}{9} + 7 \right)\cos\left( \frac{\pi}{9} + 7 \right) - \cos\left( \frac{4\pi}{9} + 7 \right)\sin\left( \frac{\pi}{9} + 7 \right) = \frac{\sqrt{3}}{2}\]

 


Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]


Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]


Prove that:

\[\frac{\sin \left( A - B \right)}{\sin A \sin B} + \frac{\sin \left( B - C \right)}{\sin B \sin C} + \frac{\sin \left( C - A \right)}{\sin C \sin A} = 0\]

 


Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x


If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:

\[\cos \left( \frac{\pi}{6} + x \right) + \cos \left( \frac{\pi}{4} - x \right) + \cos \left( \frac{2\pi}{3} - x \right) = \left( \frac{\sqrt{3} - 1}{2} + \frac{1}{\sqrt{2}} \right)\frac{23}{17}\]

 


If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).


If sin α + sin β = a and cos α + cos β = b, show that

\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]

 


If sin α + sin β = a and cos α + cos β = b, show that

\[\cos \left( \alpha + \beta \right) = \frac{b^2 - a^2}{b^2 + a^2}\]

Prove that:

\[\frac{1}{\cos \left( x - a \right) \cos \left( a - b \right)} = \frac{\tan \left( x - b \right) - \tan \left( x - a \right)}{\sin \left( a - b \right)}\]

 


If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.


If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.


If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\] 


If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =


If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is

 


\[\frac{\cos 10^\circ + \sin 10^\circ}{\cos 10^\circ - \sin 10^\circ} =\]

 


If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =


If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ


Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.


If cotθ + tanθ = 2cosecθ, then find the general value of θ.


If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2

[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]


If tanα = `m/(m +  1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.


If sinx + cosx = a, then sin6x + cos6x = ______.


The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×