English

If Sin α + Sin β = a and Cos α + Cos β = B, Show that Sin ( α + β ) = 2 a B a 2 + B 2 - Mathematics

Advertisements
Advertisements

Question

If sin α + sin β = a and cos α + cos β = b, show that

\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]

 

Answer in Brief

Solution

\[a^2 + b^2 = \left( \sin\alpha + \sin\beta \right)^2 + (\cos\alpha + \cos\beta)^2 \]

\[ \Rightarrow a^2 + b^2 = \sin^2 \alpha + \sin^2 \beta + 2\sin\alpha\sin\beta + \cos^2 \alpha + \cos^2 \beta + 2\cos\alpha\cos\beta\]

\[ \Rightarrow a^2 + b^2 = \sin^2 \alpha + \cos^2 \alpha + \sin^2 \beta + \cos^2 \beta + 2\left( \sin\alpha\sin\beta + \cos\alpha\cos\beta \right)\]

\[ \Rightarrow a^2 + b^2 = 2 + 2 \cos(\alpha - \beta) . . . (1)\]
Now,
\[b^2 - a^2 = {(\cos\alpha + \cos\beta)}^2 - \left( \sin\alpha + \sin\beta \right)^2 \]
\[ \Rightarrow b^2 - a^2 = \cos^2 \alpha + \cos^2 \beta - \sin^2 \alpha - \sin^2 \beta + 2\cos\alpha\cos\beta - 2\sin\alpha\sin\beta\]
\[ \Rightarrow b^2 - a^2 = ( \cos^2 \alpha - \sin^2 \beta) + ( \cos^2 \beta - \sin^2 \alpha) - 2\cos(\alpha + \beta)\]
\[ \Rightarrow b^2 - a^2 = 2\cos(\alpha + \beta)\cos(\alpha - \beta) + 2\cos(\alpha - \beta)\]
\[ \Rightarrow b^2 - a^2 = \cos(\alpha + \beta)(2 + 2 \cos(\alpha - \beta)) . . . (2)\]
From (1) and (2), we have

\[b^2 - a^2 = \cos(\alpha + \beta)\left( a^2 + b^2 \right) \]

\[ \Rightarrow \frac{b^2 - a^2}{a^2 + b^2} = \cos(\alpha + \beta)\]
\[\Rightarrow \sin\left( \alpha + \beta \right) = \sqrt{1 - \cos^2 (\alpha + \beta)}\]
\[ \Rightarrow \sin\left( \alpha + \beta \right) = \sqrt{1 - \left( \frac{b^2 - a^2}{b^2 + a^2} \right)^2} = \sqrt{\frac{b^4 + a^4 - b^4 - a^4 + 4 a^2 b^2}{\left( b^2 + a^2 \right)^2}}\]
\[ \Rightarrow \sin\left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 28.1 | Page 21

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that: `2 sin^2  (3pi)/4 + 2 cos^2  pi/4  + 2 sec^2  pi/3 = 10`


Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


Prove the following:

`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`


Prove the following:

`(sin x - sin 3x)/(sin^2 x - cos^2 x) =  2sin x`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)


If \[\tan A = \frac{3}{4}, \cos B = \frac{9}{41}\], where π < A < \[\frac{3\pi}{2}\] and 0 < B <\[\frac{\pi}{2}\], find tan (A + B).

 


If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)


Evaluate the following:
 cos 80° cos 20° + sin 80° sin 20°


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)


Prove that:
\[\frac{7\pi}{12} + \cos\frac{\pi}{12} = \sin\frac{5\pi}{12} - \sin\frac{\pi}{12}\]


Prove that:

\[\sin\left( \frac{\pi}{3} - x \right)\cos\left( \frac{\pi}{6} + x \right) + \cos\left( \frac{\pi}{3} - x \right)\sin\left( \frac{\pi}{6} + x \right) = 1\]

 


Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]


Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]


Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x


Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x


If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.

 

If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.

 

Prove that:

\[\frac{1}{\sin \left( x - a \right) \cos \left( x - b \right)} = \frac{\cot \left( x - a \right) + \tan \left( x - b \right)}{\cos \left( a - b \right)}\]

 


Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 


Find the maximum and minimum values of each of the following trigonometrical expression: 

\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]


Write the maximum and minimum values of 3 cos x + 4 sin x + 5. 


The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\] 


tan 20° + tan 40° + \[\sqrt{3}\] tan 20° tan 40° is equal to 


If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to

 

If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to 


If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =


Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α


If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ


If cotθ + tanθ = 2cosecθ, then find the general value of θ.


If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.


The value of tan 75° - cot 75° is equal to ______.


If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.


State whether the statement is True or False? Also give justification.

If tanA = `(1 - cos B)/sinB`, then tan2A = tanB


State whether the statement is True or False? Also give justification.

If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×