English

If Tan 69° + Tan 66° − Tan 69° Tan 66° = 2k, Then K = - Mathematics

Advertisements
Advertisements

Question

If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =

Options

  • −1

  • \[\frac{1}{2}\]

     

  • \[- \frac{1}{2}\]

     

  • None of these

MCQ

Solution

\[- \frac{1}{2}\]
\[\tan135^\circ = \tan(90^\circ + 45^\circ)\]
\[ = - \tan45^\circ\]
\[ = - 1\]
\[Or, \tan(69^\circ + 66^\circ) = \frac{\tan69^\circ + \tan66^\circ}{1 - \tan69^\circ \tan66^\circ}\]
\[ \Rightarrow - 1 = \frac{\tan69^\circ + \tan66^\circ}{1 - \tan69^\circ \tan66^\circ}\]
\[ \Rightarrow \tan69^\circ + \tan66^\circ - \tan69^\circ\tan66^\circ = - 1\]
Therefore, 
\[2k = - 1\]
\[ \Rightarrow k = \frac{- 1}{2}\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.4 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.4 | Q 22 | Page 28

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the value of: sin 75°


Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


Prove the following:

`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) =  cot^2 x`


Prove the following:

`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`


Prove the following:

`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`


Prove the following:

`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`


Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x


If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)


Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]


Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.


Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]


Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)


If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.

 

If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.

 

Prove that:
\[\frac{1}{\sin \left( x - a \right) \sin \left( x - b \right)} = \frac{\cot \left( x - a \right) - \cot \left( x - b \right)}{\sin \left( a - b \right)}\]


If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.


If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.


Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 


Reduce each of the following expressions to the sine and cosine of a single expression: 

cos x − sin 


Write the maximum and minimum values of 3 cos x + 4 sin x + 5. 


Write the maximum value of 12 sin x − 9 sin2 x


If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.  


If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to


If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =


If cot (α + β) = 0, sin (α + 2β) is equal to


If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to 


If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then


If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ


Match each item given under column C1 to its correct answer given under column C2.

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`

If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].


Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2

[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]


If tan θ = 3 and θ lies in third quadrant, then the value of sin θ  ______.


If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.


If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.


State whether the statement is True or False? Also give justification.

If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×