English

Prove the following: tan4x=4tanx(1-tan2x)1-6tan2x+tan4x - Mathematics

Advertisements
Advertisements

Question

Prove the following:

`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`

Sum

Solution

`tan4 = tan 2 (2x) = (2tan2x)/(1 - tan^2 2x)`

= `(2tan 2x)/(1 - tan^2 (2x))`

= `((2tanx)/(1 - tan^2x))/(1 - (2tan^x)/(1 -  tan^2x) `

= `(4tanx (1 - tan^2 x))/((1 - tan^2x)^2 - 4 tan^2 x)`

= `(4tanx ( 1 -  tan^2 x))/(1 - 2 tan^2x+ tan^2 x - 4tan^2`

= `(4tanx (1 - tan^2x))/(1 + tan^4 x - 6 tan^2x)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise 3.3 [Page 74]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise 3.3 | Q 23 | Page 74

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that  `cot^2  pi/6 + cosec  (5pi)/6 + 3 tan^2  pi/6 = 6`


Prove that: `2 sin^2  (3pi)/4 + 2 cos^2  pi/4  + 2 sec^2  pi/3 = 10`


Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


Prove the following:

`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`


Prove the following:

sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x


Prove that: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2  (x - y)/2`


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)


Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)


Prove that

\[\frac{\cos 11^\circ + \sin 11^\circ}{\cos 11^\circ - \sin 11^\circ} = \tan 56^\circ\]

If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].


Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)


Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1


If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.

 

If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.


Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 


Find the maximum and minimum values of each of the following trigonometrical expression: 

12 cos x + 5 sin x + 4 


Find the maximum and minimum values of each of the following trigonometrical expression:

sin x − cos x + 1


Reduce each of the following expressions to the sine and cosine of a single expression: 

cos x − sin 


Reduce each of the following expressions to the sine and cosine of a single expression: 

24 cos x + 7 sin 


Show that sin 100° − sin 10° is positive. 


Write the maximum value of 12 sin x − 9 sin2 x


If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.


If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B


If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.  


If A + B = C, then write the value of tan A tan B tan C.


The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\] 


If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =


If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to


Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa


If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.


If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ


If cotθ + tanθ = 2cosecθ, then find the general value of θ.


If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`

[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]


The value of tan 75° - cot 75° is equal to ______.


If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.


3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×