English

Show that Sin 100° − Sin 10° is Positive. - Mathematics

Advertisements
Advertisements

Question

Show that sin 100° − sin 10° is positive. 

Short Note

Solution

\[\text{ Let } f\left( \theta \right) = \sin100° -  \sin10°\] 

\[\text{ Multiplying and dividing by } \sqrt{1^2 + 1^2}, i . e . \text{ by } \sqrt{2}, \text{ we get }: \]

\[ \sqrt{2}\left( \frac{1}{\sqrt{2}}\sin100° - \frac{1}{\sqrt{2}}\sin10°\right)\]

\[ = \sqrt{2}\left( \cos45°\sin(90°+ 10°) - \sin45°\sin10°\right)\]

\[ = \sqrt{2}\left( \cos45°\cos10° - \sin45°\sin10° \right)\]

\[ = \sqrt{2}\cos(45°+ 10°) = \sqrt{2}co s55° , \text{ which is positive since \cos is positive in the first quadrant } .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.2 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.2 | Q 3 | Page 26

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following:

`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`


Prove the following:

`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`


Prove the following:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:

sin (A + B)

 


If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).


If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)


Prove that

\[\frac{\cos 11^\circ + \sin 11^\circ}{\cos 11^\circ - \sin 11^\circ} = \tan 56^\circ\]

Prove that:

\[\sin\left( \frac{\pi}{3} - x \right)\cos\left( \frac{\pi}{6} + x \right) + \cos\left( \frac{\pi}{3} - x \right)\sin\left( \frac{\pi}{6} + x \right) = 1\]

 


If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].


Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.


Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]


Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]


If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].


If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].


If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).


Prove that:

\[\frac{1}{\sin \left( x - a \right) \cos \left( x - b \right)} = \frac{\cot \left( x - a \right) + \tan \left( x - b \right)}{\cos \left( a - b \right)}\]

 


Prove that:

\[\frac{1}{\cos \left( x - a \right) \cos \left( a - b \right)} = \frac{\tan \left( x - b \right) - \tan \left( x - a \right)}{\sin \left( a - b \right)}\]

 


Find the maximum and minimum values of each of the following trigonometrical expression: 

12 cos x + 5 sin x + 4 


Find the maximum and minimum values of each of the following trigonometrical expression:

sin x − cos x + 1


If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\]  then write the value of tan x tan y


If A + B = C, then write the value of tan A tan B tan C.


The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\] 


If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =


If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =


tan 3A − tan 2A − tan A =


If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to

 

If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is

 


If cot (α + β) = 0, sin (α + 2β) is equal to


The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is

 

If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to 


Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α


The value of tan 75° - cot 75° is equal to ______.


If sinx + cosx = a, then |sinx – cosx| = ______.


In the following match each item given under the column C1 to its correct answer given under the column C2:

Column A Column B
(a) sin(x + y) sin(x – y) (i) cos2x – sin2y
(b) cos (x + y) cos (x – y) (ii) `(1 - tan theta)/(1 + tan theta)`
(c) `cot(pi/4 + theta)` (iii) `(1 + tan theta)/(1 - tan theta)`
(d) `tan(pi/4 + theta)` (iv) sin2x – sin2y

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×