Advertisements
Advertisements
Question
Show that sin 100° − sin 10° is positive.
Solution
\[\text{ Let } f\left( \theta \right) = \sin100° - \sin10°\]
\[\text{ Multiplying and dividing by } \sqrt{1^2 + 1^2}, i . e . \text{ by } \sqrt{2}, \text{ we get }: \]
\[ \sqrt{2}\left( \frac{1}{\sqrt{2}}\sin100° - \frac{1}{\sqrt{2}}\sin10°\right)\]
\[ = \sqrt{2}\left( \cos45°\sin(90°+ 10°) - \sin45°\sin10°\right)\]
\[ = \sqrt{2}\left( \cos45°\cos10° - \sin45°\sin10° \right)\]
\[ = \sqrt{2}\cos(45°+ 10°) = \sqrt{2}co s55° , \text{ which is positive since \cos is positive in the first quadrant } .\]
APPEARS IN
RELATED QUESTIONS
Prove the following:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`
Prove the following:
`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)
Prove that
Prove that:
If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].
Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]
Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]
If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].
If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].
If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).
Prove that:
Prove that:
Find the maximum and minimum values of each of the following trigonometrical expression:
12 cos x + 5 sin x + 4
Find the maximum and minimum values of each of the following trigonometrical expression:
sin x − cos x + 1
If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\] then write the value of tan x tan y.
If A + B = C, then write the value of tan A tan B tan C.
The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\]
If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =
If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =
tan 3A − tan 2A − tan A =
If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to
If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is
If cot (α + β) = 0, sin (α + 2β) is equal to
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to
Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α
The value of tan 75° - cot 75° is equal to ______.
If sinx + cosx = a, then |sinx – cosx| = ______.
In the following match each item given under the column C1 to its correct answer given under the column C2:
Column A | Column B |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos (x + y) cos (x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |