Advertisements
Advertisements
Question
If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =
Options
a2 + 1
a2 + 2
a2 − 2
None of these
Solution
Given:
\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = a\]
\[ \Rightarrow \left[ \tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) \right]^2 = a^2 \]
\[ \Rightarrow \tan^2 \left( \frac{\pi}{4} + x \right) + \tan^2 \left( \frac{\pi}{4} - x \right) + 2 \tan\left( \frac{\pi}{4} - x \right) \tan\left( \frac{\pi}{4} + x \right) = a^2 \]
\[ \Rightarrow \tan^2 \left( \frac{\pi}{4} + x \right) + \tan^2 \left( \frac{\pi}{4} - x \right) = a^2 - 2 \tan\left( \frac{\pi}{4} - x \right) \tan\left( \frac{\pi}{4} + x \right)\]
\[ \Rightarrow \tan^2 \left( \frac{\pi}{4} + x \right) + \tan^2 \left( \frac{\pi}{4} - x \right) = a^2 - 2\left[ \frac{\tan45^\circ - \tan x}{1 + \tan45^\circ \tan x} \times \frac{\tan45^\circ + \tan x}{1 - \tan45^\circ \tan x} \right] \]
\[ \Rightarrow \tan^2 \left( \frac{\pi}{4} + x \right) + \tan^2 \left( \frac{\pi}{4} - x \right) = a^2 - 2\left[ \frac{1^\circ - \tan x}{1 + \tan x} \times \frac{1 + \tan x}{1 - \tan x} \right]\]
\[ \Rightarrow \tan^2 \left( \frac{\pi}{4} + x \right) + \tan^2 \left( \frac{\pi}{4} - x \right) = a^2 - 2\left( \frac{1 - \tan^2 x}{1 - \tan^2 x} \right)\]
\[ \Rightarrow \tan^2 \left( \frac{\pi}{4} + x \right) + \tan^2 \left( \frac{\pi}{4} - x \right) = a^2 - 2\]
APPEARS IN
RELATED QUESTIONS
Prove that: `sin^2 pi/6 + cos^2 pi/3 - tan^2 pi/4 = -1/2`
Prove that `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
Find the value of: sin 75°
Prove the following:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`
Prove the following:
`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`
Prove the following:
sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x
Prove the following:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Prove the following:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)
Prove that
Prove that:
If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].
If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]
If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
Prove that:
If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).
Show that sin 100° − sin 10° is positive.
If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B.
If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\] then write the value of tan x tan y.
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is
If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is
Match each item given under column C1 to its correct answer given under column C2.
C1 | C2 |
(a) `(1 - cosx)/sinx` | (i) `cot^2 x/2` |
(b) `(1 + cosx)/(1 - cosx)` | (ii) `cot x/2` |
(c) `(1 + cosx)/sinx` | (iii) `|cos x + sin x|` |
(d) `sqrt(1 + sin 2x)` | (iv) `tan x/2` |
If tan θ = 3 and θ lies in third quadrant, then the value of sin θ ______.
The value of tan 75° - cot 75° is equal to ______.
If tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.
The value of sin(45° + θ) - cos(45° - θ) is ______.
If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.
If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.
If sinx + cosx = a, then |sinx – cosx| = ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
State whether the statement is True or False? Also give justification.
If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`
State whether the statement is True or False? Also give justification.
If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.