Advertisements
Advertisements
Question
If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].
Solution
We have:
\[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\]
\[\text{ Therefore, }\tan\left( A + B \right) = \frac{\tan A + \tan B}{1 - \tan A \tan B}\]
\[ \Rightarrow \tan\left( A + B \right) = \frac{\tan A + \tan B}{1 - \tan A \tan B}\]
\[ \Rightarrow \tan\left( A + B \right) = \frac{\frac{5}{6} + \frac{1}{11}}{1 - \frac{5}{6} \times \frac{1}{11}}\]
\[ \Rightarrow \tan\left( A + B \right) = \frac{\frac{61}{66}}{\frac{61}{66}}\]
\[ \Rightarrow \tan\left( A + B \right) = 1\]
\[ \Rightarrow \tan\left( A + B \right) = \tan\left( \frac{\pi}{4} \right)\]
\[\text{ Therefore, }A + B = \frac{\pi}{4} . \]
Hence proved .
APPEARS IN
RELATED QUESTIONS
Prove that `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
Prove the following:
`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`
Prove the following:
`(sin x - siny)/(cos x + cos y)= tan (x -y)/2`
Prove the following:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
Prove the following:
cos 4x = 1 – 8sin2 x cos2 x
Prove that: `(cos x + cos y)^2 + (sin x - sin y )^2 = 4 cos^2 (x + y)/2`
Prove that: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2 (x - y)/2`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)
Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]
If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).
If sin α + sin β = a and cos α + cos β = b, show that
Prove that:
If angle \[\theta\] is divided into two parts such that the tangents of one part is \[\lambda\] times the tangent of other, and \[\phi\] is their difference, then show that\[\sin\theta = \frac{\lambda + 1}{\lambda - 1}\sin\phi\]
Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\] lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =
If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then
Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x
Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x
Express the following as the sum or difference of sines and cosines:
2 cos 7x cos 3x
If sinθ + cosθ = 1, then find the general value of θ.
If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.
If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.
If sinx + cosx = a, then |sinx – cosx| = ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.
State whether the statement is True or False? Also give justification.
If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`
State whether the statement is True or False? Also give justification.
If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`
In the following match each item given under the column C1 to its correct answer given under the column C2:
Column A | Column B |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos (x + y) cos (x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |