Advertisements
Advertisements
प्रश्न
If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].
उत्तर
We have:
\[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\]
\[\text{ Therefore, }\tan\left( A + B \right) = \frac{\tan A + \tan B}{1 - \tan A \tan B}\]
\[ \Rightarrow \tan\left( A + B \right) = \frac{\tan A + \tan B}{1 - \tan A \tan B}\]
\[ \Rightarrow \tan\left( A + B \right) = \frac{\frac{5}{6} + \frac{1}{11}}{1 - \frac{5}{6} \times \frac{1}{11}}\]
\[ \Rightarrow \tan\left( A + B \right) = \frac{\frac{61}{66}}{\frac{61}{66}}\]
\[ \Rightarrow \tan\left( A + B \right) = 1\]
\[ \Rightarrow \tan\left( A + B \right) = \tan\left( \frac{\pi}{4} \right)\]
\[\text{ Therefore, }A + B = \frac{\pi}{4} . \]
Hence proved .
APPEARS IN
संबंधित प्रश्न
Prove that: `sin^2 pi/6 + cos^2 pi/3 - tan^2 pi/4 = -1/2`
Prove the following:
cos2 2x – cos2 6x = sin 4x sin 8x
Prove the following:
`(sin x - sin 3x)/(sin^2 x - cos^2 x) = 2sin x`
Prove the following:
cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)
Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]
Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)
Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]
If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
Prove that:
Prove that:
Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\] lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]
If x cos θ = y cos \[\left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right)\]then write the value of \[\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\]
If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B.
If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\]
The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\]
If cot (α + β) = 0, sin (α + 2β) is equal to
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is
If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =
If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.
If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].
If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2
[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]
If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`
[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
The value of tan3A - tan2A - tanA is equal to ______.
The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.
If sinx + cosx = a, then sin6x + cos6x = ______.
State whether the statement is True or False? Also give justification.
If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`
State whether the statement is True or False? Also give justification.
If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.