मराठी

If sin(x+y)sin(x-y)=a+ba-b, then show that tanxtany=ab [Hint: Use Componendo and Dividendo]. - Mathematics

Advertisements
Advertisements

प्रश्न

If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].

सिद्धांत

उत्तर

Given that: `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`

⇒ `(sin(x + y) + sin(x - y))/(sin(x + y) - sin(x - y)) = (a + b + a - b)/(a + b - a + b)`  .....(Using componendo and dividendo theorem)

⇒ `(2sin((x + y + x - y)/2) cos  ((x + y - x + y)/2))/(2cos((x + y + x - y)/2) sin((x + y - x + y)/2)) = (2a)/(2b)`

⇒ `(sinx . cos y)/(cosx . sin y) = a/b`

⇒ tan x.cot y = `a/b`

⇒ `tanx/tany = a/b`

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Exercise [पृष्ठ ५३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 3 Trigonometric Functions
Exercise | Q 13 | पृष्ठ ५३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove the following:

`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) =  cot^2 x`


Prove the following:

sin2 6x – sin2 4x = sin 2x sin 10x


Prove the following:

`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`


Prove the following:

`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`


Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:

sin (A + B)

 


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)


Prove that:

\[\sin\left( \frac{3\pi}{8} - 5 \right)\cos\left( \frac{\pi}{8} + 5 \right) + \cos\left( \frac{3\pi}{8} - 5 \right)\sin\left( \frac{\pi}{8} + 5 \right) = 1\]

 


 If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].


If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].


If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].


If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.


Reduce each of the following expressions to the sine and cosine of a single expression: 

cos x − sin 


Show that sin 100° − sin 10° is positive. 


If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B


If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\]  then write the value of tan x tan y


The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\] 


If cot (α + β) = 0, sin (α + 2β) is equal to


The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is

 

If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]


If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =


Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x


If cotθ + tanθ = 2cosecθ, then find the general value of θ.


If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2

[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]


If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`

[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]


The value of sin(45° + θ) - cos(45° - θ) is ______.


The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.


If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.


If sinx + cosx = a, then |sinx – cosx| = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×