Advertisements
Advertisements
प्रश्न
If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\] then write the value of tan x tan y.
उत्तर
\[\frac{\cos(x - y)}{\cos(x + y)} = \frac{m}{n}\]
\[ \Rightarrow \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y - \sin x \sin y} = \frac{m}{n}\]
\[ \Rightarrow \frac{1 + \tan x \tan y}{1 - \tan x \tan y} = \frac{m}{n} \left[ \text{ Dividing numerator and denominator of LHS by } \cos x \cos y \right]\]
\[ \Rightarrow n + n\tan x \tan y = m - m\tan x \tan y\]
\[ \Rightarrow \tan x\tan y(m + n) = m - n\]
\[ \Rightarrow \tan x \tan y = \frac{m - n}{m + n}\]
APPEARS IN
संबंधित प्रश्न
Prove that `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
Prove the following:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`
Prove the following:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
Prove that: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`
Prove that: sin 3x + sin 2x – sin x = 4sin x `cos x/2 cos (3x)/2`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A − B)
If \[\tan A = \frac{3}{4}, \cos B = \frac{9}{41}\], where π < A < \[\frac{3\pi}{2}\] and 0 < B <\[\frac{\pi}{2}\], find tan (A + B).
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°
Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°
Prove that
Prove that:
If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].
Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]
If tan (A + B) = x and tan (A − B) = y, find the values of tan 2A and tan 2B.
If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].
If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).
If sin α + sin β = a and cos α + cos β = b, show that
If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).
Find the maximum and minimum values of each of the following trigonometrical expression:
12 sin x − 5 cos x
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B.
If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =
If cot (α + β) = 0, sin (α + 2β) is equal to
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa
Express the following as the sum or difference of sines and cosines:
2 cos 7x cos 3x
If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.
If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ
If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.
If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.
If sinx + cosx = a, then |sinx – cosx| = ______.
State whether the statement is True or False? Also give justification.
If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.