Advertisements
Advertisements
प्रश्न
If sin α + sin β = a and cos α + cos β = b, show that
उत्तर
\[a^2 + b^2 = \left( \sin\alpha + \sin\beta \right)^2 + (\cos\alpha + \cos\beta)^2 \]
\[ \Rightarrow a^2 + b^2 = \sin^2 \alpha + \sin^2 \beta + 2\sin\alpha\sin\beta + \cos^2 \alpha + \cos^2 \beta + 2\cos\alpha\cos\beta\]
\[ \Rightarrow a^2 + b^2 = \sin^2 \alpha + \cos^2 \alpha + \sin^2 \beta + \cos^2 \beta + 2\left( \sin\alpha\sin\beta + \cos\alpha\cos\beta \right)\]
\[ \Rightarrow a^2 + b^2 = 2 + 2 \cos(\alpha - \beta) . . . (1)\]
Now,
\[b^2 - a^2 = {(\cos\alpha + \cos\beta)}^2 - \left( \sin\alpha + \sin\beta \right)^2 \]
\[ \Rightarrow b^2 - a^2 = \cos^2 \alpha + \cos^2 \beta - \sin^2 \alpha - \sin^2 \beta + 2\cos\alpha\cos\beta - 2\sin\alpha\sin\beta\]
\[ \Rightarrow b^2 - a^2 = ( \cos^2 \alpha - \sin^2 \beta) + ( \cos^2 \beta - \sin^2 \alpha) - 2\cos(\alpha + \beta)\]
\[ \Rightarrow b^2 - a^2 = 2\cos(\alpha + \beta)\cos(\alpha - \beta) + 2\cos(\alpha - \beta)\]
\[ \Rightarrow b^2 - a^2 = \cos(\alpha + \beta)(2 + 2 \cos(\alpha - \beta)) . . . (2)\]
From (1) and (2), we have
\[b^2 - a^2 = \cos(\alpha + \beta)\left( a^2 + b^2 \right) \]
\[ \Rightarrow \frac{b^2 - a^2}{a^2 + b^2} = \cos(\alpha + \beta)\]
\[\Rightarrow \sin\left( \alpha + \beta \right) = \sqrt{1 - \cos^2 (\alpha + \beta)}\]
\[ \Rightarrow \sin\left( \alpha + \beta \right) = \sqrt{1 - \left( \frac{b^2 - a^2}{b^2 + a^2} \right)^2} = \sqrt{\frac{b^4 + a^4 - b^4 - a^4 + 4 a^2 b^2}{\left( b^2 + a^2 \right)^2}}\]
\[ \Rightarrow \sin\left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]
APPEARS IN
संबंधित प्रश्न
Prove that `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Find the value of: sin 75°
Prove the following:
`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) = cot^2 x`
Prove the following:
cos2 2x – cos2 6x = sin 4x sin 8x
Prove the following:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Prove the following:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A − B)
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
Prove that:
\[\frac{7\pi}{12} + \cos\frac{\pi}{12} = \sin\frac{5\pi}{12} - \sin\frac{\pi}{12}\]
Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]
Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.
If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].
If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).
Prove that:
If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).
Find the maximum and minimum values of each of the following trigonometrical expression:
12 sin x − 5 cos x
Reduce each of the following expressions to the sine and cosine of a single expression:
24 cos x + 7 sin x
If x cos θ = y cos \[\left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right)\]then write the value of \[\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\]
Write the maximum and minimum values of 3 cos x + 4 sin x + 5.
Write the maximum value of 12 sin x − 9 sin2 x.
If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.
If \[\frac{\cos \left( x - y \right)}{\cos \left( x + y \right)} = \frac{m}{n}\] then write the value of tan x tan y.
tan 3A − tan 2A − tan A =
If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]
If sin (π cos x) = cos (π sin x), then sin 2x = ______.
The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is
If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =
Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x
Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α
If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].
If sinθ + cosθ = 1, then find the general value of θ.
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
The value of tan 75° - cot 75° is equal to ______.